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Abstract—Predicting the app that a user will open next is essential
for improving user experience, e.g., app pre-loading. Unlike previous
solutions that only predict next app’s ID, this work also predicts the time
to open next app. Time prediction is important to avoid loading the next
app too early, consuming too much memory and energy on smartphones.
To predict next app’s ID and open time jointly, we model app usage as
a marked temporal point process (MTPP), whose conditional intensity
function can capture the probability of a new app usage event. We
develop a novel data-driven MTPP-based app prediction system, named
as ATPP (App Temporal Point Process), which adopts a recurrent neural
network architecture to learn the MTPP conditional intensity function
for app prediction. ATPP adopts a set of techniques to incorporate the
unique features of app prediction in our RNN architecture, including
learning the correlated usage behavior of different apps by representation
learning, the temporal dependency of app usage events by an attention
mechanism, and the location-related app usage behavior by a feature
extraction and fusion layer. We conduct extensive experiments on a large-
scale anonymized app usage dataset from 443 users over 21 days. The
experiment results demonstrate that ATPP outperforms the state-of-the-
art app prediction method by 6.0% in the prediction accuracy of next
app ID and 2.09× reduction in the prediction error of next app open
time. A field experiment of 22 users reveals that ATPP can reduce the
app loading time by 78%.

Index Terms—Mobile Devices, App Usage Prediction, Marked Tempo-
ral Point Process, Neural Networks

I. INTRODUCTION

One effective way to improve mobile user’s experience is to

minimize app loading time, i.e., pre-loading next app into memory

before the user clicks on it [1]–[3]. The key research problem is to

predict which app the user will click on next. Many solutions [4]–[9]

have been proposed; however, they are mainly focused on predicting

the ID of next app, but ignoring the time that the user will open

that app. Time prediction is critical for app pre-loading, since it may

consume too much energy and memory on smartphones unnecessarily

if the predicted apps are loaded too early [10].

This paper proposes to jointly predict the ID of next app and its

open time by modeling app usage sequences as a Marked Temporal

Point Process (MTPP) [11], whose conditional intensity function can

quantify the probability of a new app usage event conditioned by

previous events. In our preliminary study, we implement two widely-

used MTPP intensity functions, i.e., the Hawkes process [12] and the

Homogeneous Poisson process [11]. However, our experiments on an

anonymized app usage dataset of 443 users show that such a simple

MTPP-based method provides low prediction performance. First, it

is hard to find a proper MTPP intensity function to explicitly capture

the influence of previous app usage events. Second, app prediction

needs to consider some unique features, including the correlated

usage behavior of similar apps, the temporal dependency of app usage

events, and the location-related app usage behavior.

To address the above limitations, we develop a novel data-driven

MTPP-based app prediction system, named as ATPP (App Temporal

Point Process). It uses Recurrent Neural Network (RNN) [13] to learn

the conditional intensity function of MTPP model based on historical

app usage data. We implement the RNN model by a set of Gated

Recurrent Units (GRU) [14], which transforms an app usage sequence

into a sequence of hidden states. Each state is a feature vector

learned via previous app usage events. Furthermore, ATPP adopts

a novel RNN framework that incorporates the temporal dependency

and spatial context of app usage events into app prediction. We design

two feature extractors for temporal dependency and spatial context

respectively. The extracted temporal and spatial features are fused by

Hadamard product [15] in the RNN framework for predicting next

app ID and its open time. To perform Hadamard product, we adopt a

3-layer fully-connected neural network activated by a tanh function

to convert two feature vectors into the same size.

The temporal app usage pattern is that historical app usage events

have different influence on the usage of next app. Taking the app

usage sequence ”Amazon, WhatsApp, ApplePay” as an example, a

user receives a message from WhatsApp, while she is using Amazon

for online shopping. After she returns from WhatsApp, she pays the

Amazon bill by ApplePay. During this process, the usage of ApplePay

is mainly determined by the usage of Amazon, but not the latest app

usage (WhatsApp). In this case, WhatsApp is a drop-in app that may

confuse our app prediction model. To minimize the impact of drop-

in apps, we incorporate an attention mechanism [16] into our RNN-

based app prediction framework. Our RNN model outputs a fused

feature vector that is a weighted combination of all the hidden states.

The weight of each hidden state represents the importance of each

historical app usage event.

The spatial app usage pattern is that app usage behavior is highly

related to spatial context [8]. We develop a spatial context feature

extractor. With our dataset, we know the location of the associated cell

tower when an app usage event occurs. We leverage the set of Points

of Interests (POIs) surrounding the cell tower to capture the spatial

features of every app usage event. Based on such a representation,

ATPP can generalize the past spatial app usage patterns to new places

by comparing the similarity between POI vectors at different places.

To accelerate the learning process, we develop an efficient app

representation module. The input to above RNN-based app prediction

is each app usage event in an app usage sequence. Normally, a one-

hot vector is used to represent an app, i.e., all bits in the vector are ’0’

except one ’1’ to specify that app. The size of the one-hot vector is the

number of apps installed by a user. However, such a one-hot vector

cannot capture the similarity between different apps. The app usage

behavior learned from one app cannot be generalized to other apps

with similar behavior. ATPP adopts a low-dimensional representation

model. We use a deep neural network to convert a one-hot vector into

a more expressive vector with a lower dimension, i.e., every item in

the representation vector is a floating number. As a result, similar
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apps can share similar representations and utilize the learned app

usage behavior for app prediction.

We implement ATPP on TensorFlow [17], an open source machine

learning platform. We train a set of ATPP parameters, including

the GRU’s parameters of the app predictor, and the weight matrix

of the app representer and the spatial context feature extractor. We

perform end-to-end training of all these parameters by using the

Adam algorithm [18], which calculates the gradient of a loss function

and updates all learning parameters accordingly.

We conduct both trace-driven validation and field experiments. The

trace-driven validation is on an anonymized app usage dataset from

443 users over 21 days. The results demonstrate that ATPP provides

high accuracy up to 81.5% in app ID prediction and 1.45 minutes app

time prediction. The field experiments involve 22 volunteers who use

our app pre-loading application on smartphones over 21 days. ATPP
can reduce the app loading time by 78.1% on average. Compared

with the state-of-the-art, ATPP can reduce energy consumption by

8.9% and memory cost by 33.5% on smartphones.

In summary, this paper makes the following contributions.

• We model the app prediction problem as a MTPP process for

jointly predicting both next app and its open time.

• To transform the above idea into a practical system, we develop

ATPP with a set of customized techniques, including RNN-

based MTPP model learning, app usage event presentation, and

temporal and spatial context feature extraction and fusion.

• We conduct both extensive simulations on an app usage dataset

and a field experiment. The results demonstrate that ATPP
outperforms state-of-the-art methods.

II. MTPP-BASED APP PREDICTION

We model the app usage sequence as a MTPP process [11], which

is a random process generated by a sequence of time-series events.

H = {e0 = (t0, a0) , e1 = (t1, a1) , . . . , eN = (tN , aN )} (1)

where ai is the app opened by a user at time ti. MTPP characterizes

the app usage time by a conditional intensity function λ∗ (t), which

is the probability of observing an event (the user opens an app) in

time window [t, t+ dt) given the historical events H.

λ∗ (t) := P { apps are opened in [t, t+ dt) | H} (2)

where ∗ means that the intensity function depends on the history H.

We can also specify a probability that app ai will be used in next

time window [t, t+ dt) given the historical events H.

m∗(ai) := P { app ai is used in [t, t+ dt) | H} (3)

Model specification. To use the above MTPP model, we need to

first specify the probability λ∗ (t) and m∗(ai). We will find a specific

MTPP model that can mostly capture app usage behavior, and use

historical data to determine the parameter of that MTPP model. In

this work, we choose the Hawkes process [12] to model app usage

behavior, which has been used in many applications to model time

sequence data. In Hawkes process, the intensity function λ∗ (t) is

defined as follows.

λ∗ (t) = μ+
∑
ti<t

κ (t− ti) (4)

where μ is a baseline intensity independent of the historical data,

and κ(t) is a triggering function. A common choice of the triggering

function κ(t) is an exponential function.

κ(t) := αω exp(−ωt) (5)

where ω is used to control the rate of decaying influence from

previous events, and α controls the likelihood of an event causing

another event. Recent events will increase the value of the intensity

function if κ(t) is greater than 0.

Prediction of next app. We assume app ID usage as an multino-

mial distribution [11], i.e., the probability that app ai will be used in

next time window [t, t+ dt) is determined by its usage frequency in

the historical events H.

m∗(ai) =
exp(fai)∑aK

ai=1 exp(fai)
(6)

where K is the number of apps installed on the user’s smartphone,

and fai is the probability that app ai is opened.

Prediction of next app open time. We can use Equation 7 to

predict the open time of next app usage [11].

t̂i+1 =

∫ T

ti

t · λ∗(t) exp
(
−
∫ t

ti

λ∗(τ)dτ
)
dt (7)

where λ∗(t) exp
(
− ∫ t

ti
λ∗(τ)dτ

)
is the probability density function.

It represents the likelihood that an app usage event will occur at the

time t given the history.

The above MTPP model needs to learn three parameters, denoted

as θ = (μ, α, ω), by app usage data. The learning process is

introduced in Appendix A.

Once we have the learned MTPP model, we test its performance

by some preliminary experiments on a large dataset of 2,104,369 app

usage records from 443 users collected over 21 days by a mobile

operator. Smartphones may send requests to a cellular tower when

the users click on an app. The cellular tower then sends URLs to

the operator server, which parses URLs into corresponding app IDs

by url-app encoding tables. We know the user’s rough location area

based on the location of the associated cell tower.

Our experiment results show that the above MTPP-based solution

provides limited performance, e.g., the mean absolute error of time

prediction is 4.36 minutes. More detailed experiment results and

corresponding analysis can be found in Section IV. The MTPP-based

method makes strong assumptions about the generation process of

app usage behavior by a specific intensity function. However, the

probability of app usage is diverse at different hours, and the app

usage patterns of two users are different over the same hour. It is

difficult for a specific MTPP process to fit the real app usage behavior

for different time and users.

Moreover, the above MTPP-based solution cannot consider tem-

poral or spatial app usage pattern for its predefined simple model.

For example, some apps are opened arbitrarily when users are

using their phone. Hence, historical app usage events may have

different influences on the current prediction due to temporal app

usage behavior. Or environment context (e.g., spatial context) has a

significant influence on the apps usage behavior [8].

III. DESIGN OF ATPP

In this section, we introduce the design of ATPP and its key

components to handle the above challenges.

A. Architecture of ATPP

Figure 1 depicts the architecture of ATPP, consisting of three key

modules, i.e., an app representation, an app-usage event predictor,

and a context-aware optimization module. An App usage sequence is

a sequence of app usage events. Each app usage event is recorded as

an app ID with a unique timestamp. Given an app usage sequence, we
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Fig. 1. The architecture of ATPP.

first use an app representation to convert it into a sequence of high-

quality representations for each app usage event (Section III-B). Then,

an RNN-based app-usage event predictor is applied to predict the app

ID that user most-likely uses and its open time (Section III-C). At

the same time, we customize the predictor model by incorporating

a context-aware optimization module to improve the prediction ac-

curacy, including an attention-based temporal feature extractor and a

spatial context feature extractor (Section III-D).

The above prediction (inference) process includes three neural

networks, including an app representation (a two-layer neural net-

work), an RNN-based app predictor and a context-aware optimization

module. We perform end-to-end training for all these neural networks

at the same time. We design a loss function (Appendix C) to quantify

the quality of each app prediction result, which combines the result

of both app ID prediction and app open time prediction. Based

on the loss function, the Adam algorithm with descending gradient

optimization will be used to update the weight parameters in all these

neural networks simultaneously.

B. App representation

An app in an app usage sequence can be intuitively represented

by a one-hot vector, in which all bits are ’0’ except one ’1’. For

example, in Figure 2, to represent App 3, only the third item

in the one-hot vector is set to ’1’. Such a simple representation

method suffers from two drawbacks. First, it is hard to train the

app-usage event predictor model that takes app representation as

input, because the one-hot vector is too sparse, with too many

”0”, especially when a user installs a large number of apps on

her smartphone. Second, such a simple app representation cannot

capture the similarity between apps. As a consequence, we cannot

utilize the learned app usage behavior to infer some unobserved apps.

Therefore, we develop an app representation to automatically learn a

low-dimensional representation of each app usage event.

App 1

App 2
App 3

App N

…
…

Input vector

0

0

1

0

...

0.3

...

0.5

Representation vector

Fig. 2. The architecture of app representation.

Figure 2 depicts the architecture of the app representation that

uses a two-layer neural network to convert a high-dimension one-

hot vector into a low-dimension representation vector. The input

vector is a K-dimension one-hot vector, where K is the number

of apps installed on a user’s smartphone. The input one-hot vector is

transformed into a D-dimension vector by a two-layer neural network

with a weight matrix WKD .

For each app usage event, besides the app ID representation, the

app-usage event predictor also needs the time information of that

G

1x 2x ix

1h ih2h

Temporal-app Vector
i
hv

Softmax Fully-connected

App ID Open Time

0h …G G

Fig. 3. The architecture of the app-usage event predictor.

event. We take the inter-event duration as the time information.

Specifically, the inter-event duration between the i-th app usage event

and the previous app usage event is calculated as ti− ti−1, where ti
is the open time of app ai in the sequence (ti, ai)

N
i=1. In our current

implementation, the inter-event duration is quantified in minutes. By

obtaining the app representation and time information on each app

usage event, we feed them into an app-usage predictor.

C. App-usage event predictor

We design a recurrent MTPP-based app prediction system, which

leverages an RNN model to learn the intensity function of MTPP

process in a data-driven manner. Figure 3 shows the architecture of

our app-usage event predictor. A recurrent neural network composed

of Gated Recurrent Units (GRU) is used to encode N app usage

events into an app usage feature vector vi
h, which will be further

passed to a softmax layer for predicting next app ID and to a fully-

connected layer for predicting open time. N is the length of input

app sequence. In our current implementation, N is set to 5. The input

of predictor is a sequence of apps and their open time {xi}Ni=1.

RNN-based feature extraction. We implement RNN as a set of

GRU units [14]. Although Long Short-Term Memory (LSTM) [19]

is also widely used, GRU achieves similar performance in many

tasks with less computation [14]. The computation of GRU can be

expressed as follows.

hi = GRU(xi,hi−1) (8)

where hi is the hidden state, and hi−1 is the previous hidden state.

The current hidden state, hi, learns a feature representation that

characterizes the dependency on previous app usage events.

At the beginning of the training process, h0 is uniformly initialized

to random values [−0.1, 0.1] for the first app sequence. To be

consistent, in the rest of paper, the current hidden state hi, is also

referred as the temporal app vector vi
h, i.e., vi

h = hi. Based on the

temporal app vector, we predict next app âi+1 and open time t̂i+1.

Prediction of next app ID. We use a softmax layer to process the

temporal-app vector vi
h. The optimal predicted app âi+1 is calculated

by selecting the corresponding maximum probability as follows.

âi+1 = argmax
{

softmax
(
Vs · vi

h

)}
(9)

where Vs is a K × D matrix that needs to be learned, and D is

the dimension of vector vi
h. The term Vs · vi

h will generate a K-

dimension vector. The softmax layer normalizes the elements of the

K-dimension vector into a probability distribution over K apps, i.e.,
each element is between 0 and 1, and the sum of all elements is 1.

Prediction of next app open time. We first need to learn a MTPP

conditional intensity function via the RNN output vi
h. Inspired by

RMTPP [20], we use the learned hidden states to calculate a general

representation of intensity function. Compared to simple MTPP-based
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Fig. 4. The architecture of attention-based feature extractor.

app prediction method that using a predefined intensity function

(e.g., Equation 4), Equation 10 provides a general representation of

intensity function that can be learned from historical data.

λ∗ (t) = exp
(
v�
t · vi

h + wt · (t− ti) + bt
)

(10)

where vt, wt and bt are parameters to learn, and ti is the open

time of app ai. vt is a parameter vector and its dimension is the

same as vi
h. In Equation 10, the first part, v�

t · vi
h, characterizes

the accumulative influence from previous app usage events on the

open time of next app. The second part, wt · (t− ti), emphasizes on

the influence of the latest app usage event (ti, ai). The last term bt
represents a base intensity level. The exponential function provides a

non-linear transformation that makes the intensity function positive.

Based on the conditional intensity function obtained from Equa-

tion 10, we can predict next app open time ˆti+1 through Equation 7.

D. Context-aware optimization module

To further improve the prediction accuracy of ATPP, we exploit

two special app usage behaviors observed from our dataset, i.e.,
drop-in app usage and spatial-related app usage. To incorporate these

behaviors into our app-usage event predictor, we design two feature

extractors, i.e., an attention-based temporal feature extractor and a

spatial context feature extractor. We update the temporal-app vector

vi
h by fusing the above two features.

1) Attention-based temporal feature extractor: In the previous

app-usage event predictor, we only use the current hidden state vi
h

to do prediction, but vi
h does not consider the different contributions

that previous app usage events may make to the next app prediction,

especially when drop-in apps have been opened in the app sequence.

Figure 4 depicts the architecture of attention-based temporal feature

extractor, which integrates soft attention mechanism [16] into ATPP
to handle drop-in app usage, which calculates a vector as weighted

sum of a set of hidden states. Instead of only using the last hidden

state hi for app prediction, we use all the hidden state vectors

{hi}Ni=1 to generate a fused vector in this section. we can obtain

a new temporal-app vector vi
h as follows.

vi
h =

N∑
i=1

αxihi (11)

The new temporal-app vector vi
h is a weighted sum of all the

hidden state vectors {hi}Ni=1. The weight αxi is calculated by,

αxi = |tanh (hi ∗ hN )| (12)

where hN is the latest hidden state in a sequence, and tanh is the

score function measuring the influence strength from hi to hN . If the

hidden state hi is similar to hN , the score function tanh generates

a high weight, otherwise a low weight. One app usage event with a

G

1x ix

1h ih
Nh

1

Nx
x

G

N

i

x
x

0.3 … 0.2 0.6 … 0.1

0h

lv

Temporal-app Vector
i
hv

Fig. 5. Combination of the results from two feature extractors.

higher weight should be paid to more attention. We normalize all the

weights to make sure that they are summed to 1.

2) Spatial context feature extractor: A user may have diverse app

usage behavior in different spatial contexts [8]. Hence, we develop

a spatial context feature extractor to incorporate the spatial context

into our app predictor. Figure 5 depicts the architecture of the spatial

context feature extractor. It first generates spatial context based on

the cellular data we used in this work. It then fuses the learned spatial

context feature into the temporal-app vector vi
h learned above.

In our cellular dataset, the GPS coordinates of the cell tower a

user’s mobile phone is associated with when the user’s current app

sends a request to the cell tower. GPS location (latitude and longitude)

of the cell tower restricts the representation of the spatial information

for a user. To this end, we leverage the point of interest (POI)

distributions nearby the location of a cell tower to represent the spatial

context of a user. POI refers to all geographical objects that can be

abstracted as points, such as restaurants, supermarkets.

In particular, for a sequence of N app usage events, we take

the average values of N longitudes and latitudes as the central

GPS coordinates. We then characterize this central GPS coordinates

by the distribution of POIs within a radius of 500 meters. We

obtained a POI dataset containing more than 300,000 POIs of the

city from AMAP [21], which provides application programming

interface (APIs) to crawl POIs on the map. For a specific location,

we represent the 23-dimension spatial vector as vl =
[
l1, lj , . . . , lm

]
for 23 types of POI. The dimension corresponds to the number of

categories of POI, where lj is the POI number of type j within the

radius of 500 meters.

3) Feature fusion: We apply two methods to combine the spatial

context feature vector vl and the temporal-app vector vi
h obtained

from the attention-based temporal feature extractor. A simple way is

to concatenate these two feature vectors into a long feature vector.

Another method is to use the Hadamard product [15] to perform

element-wise multiplication of these two feature vectors.

The Hadamard product requires two feature vectors should have

the same dimension. Therefore, we input the spatial context feature

vector vl into a neural network, which is composed of three fully-

connected layers. It can be specified by its parameters WEL. After

this transforming, the size of the spatial context feature vector

becomes the same as the temporal-app vector vi
h obtained from the

attention-based temporal feature extractor.

Based on our experiments (see Figure 8 in Section IV-B2), we find

Hadamard product provides better performance in our app prediction.

Using the Hadamard product, we obtain a new temporal-app vector

vi
h. We can use the new vector to predict next app and its open time,

as introduced in Section III-C.
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IV. EVALUATION

We conduct a variety of experiments to evaluate our system through

a trace-driven evaluation and a field study.

A. Experiment Settings

Performance criteria. To evaluate the performance of ATPP, we

use two metrics: Hitrate@K and Mean Absolute Error (MAE).

Hitrate@K calculates the hit ratio of the top-K predicted apps,

which is used to evaluate the accuracy of next app prediction. Users

can only open one app each time. When a user clicks anyone of the

top-K predicted apps, we consider it as one hit.

MAE is used to evaluate the accuracy of app open time prediction.

It measures the absolute difference between the predicted timestamp

and the ground truth. Its unit is minutes. When we calculate MAE,

we ignore whether the predicted next apps are correct.

Benchmarks. We compare the performance of ATPP with two

types of existing solutions. First, DeepAPP [8] and AU2V [9] are

based on deep learning model [22] that predicts next app. Second,

APPM [5] performs best among the traditional methods, i.e., Markov

or Bayesian models. Finally, we also develop three versions of the

MTPP-based method to predict next app and open time, including Ho-

mogeneous Poisson Process-based method (HPP), Hawkes Process-

based method (HP), app-usage event predictor (RP).

• DeepAPP [8]. It predicts the apps that a user will open in the next

time slot based on the reinforcement learning, which considers two

context information, including the last used app and spatial feature.

We set the time slot as one minute in our implementation.

• AU2V [9]. It incorporates the app sequence, user personalized

characteristics, and discrete temporal context to predict next app

that she most likely opens.

• APPM [5]. It uses the app sequence to compute the probabil-

ity of the following app based on Prediction by Partial Match

Model (PPM) [5]. Moreover, it predicts app open time through

a Time Till Usage (TTU) model.

• HPP [11]. We model app usage behavior as Homogeneous Poisson

process (HPP). Its intensity function is constant. It is the simplest

MTPP-based method to model the app usage behavior.

• HP [12]. It assumes that app usage behavior as the Hawkes process

which is introduced in Section II.

• RP. Similar to RMTPP [20], RP simply uses an RNN to learn a

MTPP conditional intensity function for app predicition.

Evaluation setup. We compare ATPP with above baselines in

Section IV-B1, then evaluate the effectiveness of Hadamard product

in Section IV-B2. We also verify the effectiveness of the context-

aware optimization module in Section IV-B3. The default value

of parameters is further discussed in Section IV-B4. Next, we do

field experiments with 22 users in Section IV-C, including model’s

accuracy and latency improvement of each user. Finally, we compare

the overhead produced by ATPP and DeepAPP in Section IV-D.

B. Trace-driven Evaluation

We conduct trace-driven evaluations on a large-scale anonymized

app usage dataset introduced in Section II. We divide the dataset

into two parts, i.e., 14-day data for training and 7-day data for

testing. We set the default value of the size of the time window

N to 5 and the dimension of the temporal-app vector D to 64. We

use these settings by default to conduct following experiments. In

Section IV-B4, we will explain how we set these parameters to the

optimal values. And the implementation details of ATPP model is

introduced in Appendix B.

1) Overall performance comparison: As shown in Figure 6, ATPP
performs best in Hitrate@K. Compared with other models, there is an

improvement in our system. Concerning Hitrate@5, ATPP achieves a

substantial improvement, making it around 8.8% higher than APPM,

6.1% higher than RP, 6.0% higher than DeepAPP, 3.3% higher than

AU2V. The reason for such improvement is that the attention-based

temporal feature extractor captures the weithted influence of historical

app usage events sequences for prediction task. And the spatial

context feature extractor denotes personalized app usage patterns on

some specific locations.

APPM gives the worst performances, for it just utilizes the app

sequences information through the PPM [5] model. It doesn’t take

context information into account. RP achieves better performance

than APPM (75.4% vs. 72.7%) in Hitrate@5, for it leverages longer

app usage sequence through a recurrent neural network. DeepAPP

gives a little worse than ATPP (75.4% vs. 81.5%) in Hitrate@5.

DeepAPP is based on deep reinforcement learning. It models the

app usage behavior as an one-order Markov Decision Process, which

can only consider the influence of the last app that users opened

recently. AU2V mainly leverages app sequences to make predictions

through attention mechanism and incorporates user ID and temporal

context, which achieves 78.2% in Hitrate@5. But, it can not be used

efficiently in practice for it does not support predicting open time.

Although ATPP may provide a marginal improvement on the

prediction of next app, ATPP can accurately predict app open time.

As shown in Figure 7, ATPP performs best in MAE. ATPP achieves a

significant improvement in MAE, making it around 6.31× reduction

than HPP, 3.01× reduction than HP, 5.80× reduction than APPM, and

2.09× reduction than RP. The reason for making such an improve-

ment is that simple MTPP-based models make strong assumptions

about app usage behaviors. Although RP leverages a recurrent neural

network to model intensity function, it doesn’t consider drop-in app

usage and spatial-related app usage behavior.

2) Performance gain of Hadamard product: There are two meth-

ods to combine the attention-based temporal feature extractor and
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Fig. 9. Effect of the window size N .

TABLE I
EFFECTIVENESS OF PROPOSED MODULES.

Model Hitrate@5 HGain MAE MGain

RP 75.4% – 3.03 –
RP+AF 80.2% 4.8% 1.69 1.79×
RP+SF 76.5% 1.1% 2.95 1.03×
ATPP 81.5% 6.1% 1.45 2.09×

the spatial context feature extractor, i.e., concatenation or Hadamard

product [15]. Figure 8 presents the performance of the two methods.

The ’ATPP-C’ denotes the operation of concatenation. The Hadamard

product gives better performance than concatenation. Hence, we

choose Hadamard product to integrate two feature extractors.

3) Effectiveness of two modules in context-aware optimization: We

investigate the improvement on the performance of the two feature

extractors from context-aware optimization module, i.e., the attention-

based temporal feature extractor, and the spatial context feature

extractor, denoted as AF and SF, respectively. We take RP as the

baseline and use Hitrate@5 and MAE to evaluate the effectiveness of

the two modules, as shown in Table I. ’RP+AF’ indicates app-usage

event predictor with the module of AF. ’RP+SF’ means predictor

with the module of SF, which directly integrates last hidden state

with spatial vector through the Hadamard product. ’HGain’ is the

gain of Hitrate@5, ’MGain’ is the gain of MAE.

ATPP provides 6.1% performance gain in Hitrate@5 and 2.29×
reduction in MAE for it efficiently fuse drop-in app usage and spatial-

related app usage together by a context-aware optimization module.

Attention-based temporal feature extractor. This component

improves the prediction performance around 4.8% higher than the

baseline in Hitrate@5, and 1.79× reduction in MAE. The module

incorporates drop-in app usage into system, which gives the signifi-

cant performance improvement in predicting next app usage. It also

verifies that drop-in app usage has a great influence on app prediction.

Spatial context feature extractor. Compared to the baseline

model, considering spatial context obtains a 1.1% performance gain in

Hitrate@5 and 1.03× reduction in MAE. It validates the importance

of spatial context in the app prediction task.

4) Parameters settings: We further test the choice of two param-

eters in ATPP, i.e., the length of app usage event sequences N , the

dimension of temporal-app vectors D.

Window size. We first investigate the performance of ATPP with

varying window size N (length of app usage event sequences). As

shown in Figure 9, we test Hitrate@K (K=1, 2, 3, 4, 5), by varying

the window size from 2 to 8. It can be seen that Hitrate@1 increases

when the window size varies from 2 to 5. It suggests that adding the

latest app usage event sequences provides more historical information

for the prediction task. However, some results slightly decrease when

the window size varies from 5 to 8. That is probably because inputting

such a long app usage event sequence increases the difficulty in

training our system. Moreover, if we input longer sequences to predict

next app, there are relatively few training data.
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Fig. 11. Accuracy & latency improvement analysis.

This trend of change in MAE is similar to the Hitrate@K. It can

be seen that the value of MAE decreases with a window size from

2 to 5. The system achieves the best Hitrate@K and MAE metric

when the window size N is 5.

Dimension size. We also test the performance of ATPP with

varying temporal-app vectors’ dimension D when the window size is

5, shown in Figure 10. Hitrate@1 increases relatively quickly when

the dimension size varies from 24 to 27, and increases slowly from 23

to 24. The system achieves the best Hitrate@K when the dimension

size is 26. The MAE increases when dimension size varies from 26

to 29, and the MAE is best when the dimension size is 26.

C. Field study

We test ATPP in 21 days. We deploy the system as the architecture

in Figure 1. We recruit 22 volunteers. They include 7 females and 15

males, aged from 17 to 48, which have different occupations, e.g.,
company employees, college teachers, and students. After volunteers

agree to experiment, we install the Android app on their smartphones.

First, we collect 14 days of data that are used to train the model of

volunteers and load the well-trained model into the app. The app

makes inferences on the smartphone during the last seven days.

We also collect the status of smartphone usage, such as energy

consumption and memory usage, which are used to analyze the

system overhead.

1) Performance analysis: We explore the performance of ATPP
from two aspects, i.e., accuracy and latency improvement.

Accuracy. We leverage the app usage data of volunteers to evaluate

the accuracy of ATPP, which includes Hirate@5 and MAE. We

calculate the accuracy of the ATPP every day. For Hirate@5 metric,

we take the average value of all days. For MAE metric, we not

only calculate the average value but also the standard deviation of

all days. Figure 11(a) depicts the Hitrate@5 and MAE of all users

that participated in this field experiment. It shows that ATPP can

achieve high performance on average for all volunteers, i.e., 80.2%

in Hitrate@5 and 1.48 in MAE. Besides, we can see from the figure

that the accuracy of different volunteers is a little fluctuating. The

reason for such fluctuation may be that the number of apps installed

by different users, and the frequency of app usage are different, which

proves that ATPP is a robust system.
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Fig. 12. System overhead of making prediction.

Latency improvement. We measure the time reduction in vol-

unteers’ smartphones by calculating the average ratio of the saved

loading time to the launch time of smartphones without deploying

ATPP. First, we log the launch time of all apps that is installed

on smartphones. We then can obtain the time reduction according

to the correctly-predicted result of the volunteers. If ATPP gives a

correct result, then the loading time is zero. Otherwise, it consumes

unnecessary energy to load wrong apps into memory and time to

release wrong apps from memory and to load correct apps into

memory. It ignores the open time of apps if ATPP has pre-loaded

the apps, for it is neglectable in practice [23]. Figure 11(b) shows

that ATPP can reduce the app loading time by 78.1% on average

compared with no pre-loading.

DeepAPP takes the survey to collect the feedback on the usability

of the app prediction system from volunteers. It shows that 87.51%

volunteers are satisfied with the app prediction system. Compared

with DeepAPP, ATPP not only provides better performance on next

app prediction but also predicts open time. So ATPP has a higher

probability to provide users with better satisfaction of usability.

D. System Overhead

We quantify the overhead produced by our system from two

aspects, i.e., 1) the energy consumption and memory cost of running

ATPP prediction, and 2) the energy consumption and memory cost

caused by app pre-loading. To estimate the energy consumption, we

first estimate the power consumption rate of each app by a power

monitoring application (Accu Battery [24]). It estimates the actual

energy consumption based on the information from the battery charge

controller. Then, we calculate the power consumption of an app based

on the app usage time and the power consumption rate of the app.

We compare the overhead of ATPP and DeepAPP [8]. To ensure

a fair comparison, we let two volunteers use ATPP one day and use

DeepAPP on another day. Volunteers may perform different app usage

activities during two days, which means two methods made different

numbers of inference. Therefore, we use the first 300 pieces of app

usage data each day to analyze their performance.

1) Overhead of prediction: We measure the overhead on two vol-

unteers that use Samsung Galaxy S9 and Google Pixel 3, respectively.

We calculate the average value of these two devices.

Energy consumption. As depicted in Figure 12(a), the extra cost

of ATPP is about 53.59 mAh on average in a day, which can be almost

ignored compared with the total battery capacity of smartphones.

DeepAPP consumes about 41.69 mAh on average. Compared with

ATPP, DeepAPP has less energy consumption. That is because

DeepAPP makes prediction inference on the cloud server, which will

save the energy consumption of smartphones, i.e., 12.27 mAh. The

energy saved by DeepApp is marginal, because DeepAPP needs to

communicate with the cloud server in real-time. The packet size could

up to 120 bytes, which consume energy.
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Fig. 13. System overhead of pre-loading app.

Memory cost. Figure 12(b) shows the memory cost of ATPP. It

reveals that the average memory cost of ATPP is about 64.15 MB. It

means that our system does not consume much extra memory. Mem-

ory cost behaves similar trends in energy consumption. DeepAPP

consumes less memory, i.e., 10.1 MB, because of making inference on

the cloud server. However, current devices, like Samsung Galaxy S9,

provides at least 4GB memory, which can ignore the slight difference

in energy consumption, i.e., 54.05MB.

2) Overhead of app pre-loading: The overhead produced by

app pre-loading also mainly contains two aspects, i.e., energy and

memory. We also measure the overhead of our system and DeepAPP

on volunteers’ smartphones.

Energy consumption. As we know, apps may share resources,

so loading apps simultaneously will save energy than loading apps

separately [25]. Thus the energy consumption is less than what

we measure. Figure 13(a) shows the average energy consumption

during the experiment. ATPP consumes less than 63.73 mAh of

battery energies on average in a day, which is negligible for the

total battery energies (e.g., 3000 mAh). However, DeepAPP consumes

about 87.04 mAh, which consumes approximately 3% of the energy

of the smartphone. Compared with the DeepAPP, ATPP can save

8.9% of energies considering inference and app pre-loading together.

The reasons for consuming less energy in our system are as

follows. First, ATPP pre-loads the app into memory slightly before the

user opens it. It minimizes the energy consumption produced by app

pre-loading. Second, ATPP provides higher performance, i.e., 6.0%

higher than DeepAPP. Compared with DeepAPP, ATPP introduces a

few additional energy consumptions, i.e., 23.31 mAh.

Memory cost. We further measure the memory usage on smart-

phones. We monitor the memory usage of participants and get results

from Figure 13(b). As shown, our system does not consume much

memory on average, i.e., 89.76 MB of total memory. That is because

the background scheduler only pre-loads apps when the current time

is close to the predicted app open time. Moreover, if the prediction

result is wrong, we will immediately free the memory of the app.

Note that our system consumes less memory than DeepAPP (i.e.,
221.43 MB) because DeepAPP pre-loads all apps that users will be

used in the next time slot. If the pre-loaded app is not opened in the

current time slot, then it will consume much unnecessary memory,

i.e., 131.83 MB. Compared with DeepAPP, ATPP can save at least

33.5% of memory in total.

V. RELATED WORK

The latest work related to ATPP is DeepAPP [8]. It predicts the

apps that a user will open in the next time slot (5 minutes in [8])

based on deep reinforcement learning [26]–[28]. DeepAPP has to pre-

load next APP much earlier before the user opens it, which imposes

high memory and energy consumption. Moreover, since DeepAPP

models app usage behavior as a one-order Markov Decision Process,

it only considers the last app usage event for app prediction, which
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ignores two key observations made in this paper, i.e., next app

usage is determined by a number of apps used previously and the

last app may not determine next app usage. ATPP adopts a totally

different approach to predict next app and its open time accurately.

1) ATPP models app usage as a MTPP process that can well capture

the temporal dynamics of app usage behavior for app open time

prediction. 2) ATPP leverages the RNN-based neural network to

accurately learn a MTPP model for each user. 3) ATPP integrates the

attention mechanism into the RNN-based app prediction framework

to consider the influence of sequential apps on current prediction.

AppUsage2Vec [9] adopts an attention mechanism to fuse three

types of app usage features, including app usage sequences, user

ID, and discrete temporal information. However, both works only

consider the prediction of next app, without the open time of next

app. In addition, although ATPP also adopts an attention mech-

anism, it is totally different from the attention mechanism used

in AppUsage2Vec. First, AppUsage2Vec only treats the temporal

feature as one factor affecting next app usage. Its temporal feature

specifies the current time in a day and the date in a week. Unlike

AppUsage2Vec, ATPP captures the temporal dynamics of app usage

by the conditional intensity function of the MTPP process. Second,

AppUsage2Vec simply leverages the attention mechanism to obtain a

weighted summation of all the apps in an app usage sequence. ATPP
leverage the RNN-based model to learn a set of hidden states that

capture the relationship between historical app usage data and the

next app usage event.

Besides the above three latest works, conventional methods, like

Markov and Bayesian models, have also been widely used for app

prediction [4], [5]. Huang et al. [4] incorporate a set of context

information, including last used app, time, and location, into a

first-order Markov model. These works are mainly focused on the

prediction of next app, but ignore the prediction of open time.

Marked temporal point processes. MTPP [11] has been used

as a mathematical abstraction to model various phenomena across

a wide range of applications, such as human social activities [29].

RMTPP [20] uses a neural network to model the intensity function

of the subject time series events. This work extends the application

of MTPPs to app prediction by introducing a set of novel techniques.

First, ATPP integrates a context-aware optimization module into the

RNN-based prediction framework to handle drop-in apps and spatial-

related app usage patterns. Second, we develop an app representation

module to effectively capture correlation between similar apps.

VI. CONCLUSION

In this work, we develop a novel data-driven MTPP-based app

prediction system, named as ATPP, which can accurately predict

both the next app ID and its open time. ATPP adopts recurrent

neural networks to implement MTPP modeling for app prediction.

We incorporate two unique app usage behavior patterns into ATPP,

i.e., temporal and spatial dependency in app usage. A set of tech-

niques are developed, including an app representation, an app-usage

event predictor, and a context-aware optimization module. Extensive

experiments demonstrate the effectiveness of ATPP.
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APPENDIX A

PARAMETER LEARNING OF THE MTPP MODEL

In the above MTPP model, three parameters need to be learned,

denoted as θ = (μ, α, ω), which models different app usage behaviors

of different users. We use Maximum Likelihood Estimation (MLE)

to find the optimal values of these parameters for each user. Given

the app usage sequence H and intensity function, we can compute

the likelihood function of H as,

L =

(
N∏
i=1

λ∗ (ti, ai)

)
exp

(
−
∫ T

0

λ∗(s)ds
)

(13)

where λ∗(t, ai) is the conditional intensity function for the usage

event of app ai in next time window [t, t+dt). In our implementation,

T is one hour. We can calculate λ∗(t, ai) based on Equation 4, 5, 6.

The likelihood function is the joint density function of all the app

usge events in the observed data H. The last term in Equation 13

represents the probability of no app used at t ∈ [0, T ] except {ti}.

With the likelihood in Equation 13, we can use our data to find the

best setting of the three parameters θ = (μ, α, ω), through MLE.

APPENDIX B

MODEL IMPLEMENTATION

We implement ATPP on TensorFlow [17] platform. Three models

in ATPP are implemented, i.e., an app representer (Section III-B),

an app-usage event predictor (Section III-C), and a context-aware

optimization module (Section III-D).

First, we implement the app representer as a two-layer neural

network, which has K and D neurons, respectively. K is the

dimension of input one-hot app representation vector and D is the

dimension of temporal-app vector vi
h. D is set to 64 based on the

experiments of Section IV-B4.

Second, for app-usage event predictor, the length of app usage

sequence that used to train model is 5. we also use a two-layer fully-

connected feedforward neural networks as the fully-connected layer

that used to feed to softmax layer. Specifically, the layer has D and

K neurons in the two layers, respectively. We adopt relu activation

function for the first layer and tanh activation function for the second

layer. Moreover, to alleviate the over-fitting problem when training

our system, we introduce an L2 regularization term [30] in the loss

function introduced in Appendix C.

Third, for context-aware optimization, we use a three-layer fully-

connected feedforward neural network has 23, D/2, and D neurons

in the three layers, respectively. Their activation function are relu
function, where 23 is the number of categories of POI that provided

by AMap [21]. Besides, we conduct grid search strategy to get the

optimal settings of hyper-parameters, as shown in Table II.

TABLE II
HYPER-PARAMETER SETTING.

Hyper-parameter Setting

Batch size 32
Learning rate 0.001
Momentum 0.9
Decay steps 100
Decay rate 0.0001
L2 penalty 0.001
Standard deviation of Gaussian penalty σ 1.0

APPENDIX C

MODEL TRAINING

In ATPP, there are a set of neural network weight parameters to

learn, including the weight matrix WKD of the app representer,

the GRU’s parameters of the app predictor, and the weight matrix

WEL of the spatial context feature extractor. We maximize the

log-likelihood (LL) [20] of observing app usage event sequences

H = {ti, ai, li}Ni=1 to train these parameters.

LL (H) =
N∑
i=1

ai · log (uai |H(ti, ai, li))

+ log (f(ti|H(ti, ai, li)))

(14)

where uai = softmax
(
Vsv

i
h

)
is the probability that all apps are

used. The first term represents the probability of app ai is used, and

the second term is the probability of outputting the true value ti,
which assumes that the error between the open time prediction and

the true value obeys the Gaussian distribution.

f(ti|H) =
1√
2πσ

exp

(
− (

ti − t̂i
)2

2σ2

)
(15)

where σ is the standard deviation and its default value is set to 1.

The estimated t̂i was obtained from Equation 7. To maximize log-

likelihood, we can minimize the loss function of app ID and open

time prediction with Adam algorithm [18], which can be obtained

from Equation 14. In this way, we can train ATPP model in an end-

to-end manner. We first use all users’ 14-day data to train a general

model and then reuse the 14-day data of each user to further train

her own RNN model. Finally, we use the following 7-day data for

model validation and evaluation.

Discussion on the dataset. The dataset used in the trace-driven

evaluations has an inherent limitation, which does not acquire the

activities from apps that do not make HTTP requests, request by

HTTPS, or access the internet through WiFi. However, we can

collect all apps’ activities during field experiments. It can log all

apps’ activities installed on the smartphone. Moreover, ATPP gives

comparable performance in the field study, compared with trace-

driven evaluation.

Privacy issues. To avoid user privacy disclosure, the operator

replaced user identification with a hash code. The app usage data

only contains anonymized records, without any information relating

to text messages or phone conversations. Besides, we randomly select

from a very large dataset for our dataset, which can also prevent

leaking the mobile users’ privacy. In the field experiments, we also

anonymize the user identifier by a hash code. In addition, we do not

collect precise location of the user for our system only needs the POI

distribution information around cell towers.
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