
DeepAPP: A Deep Reinforcement Learning Framework for
Mobile Application Usage Prediction

Zhihao Shen*

Xi’an Jiaotong University
Xi’an, China

szh1095738849@stu.xjtu.edu.cn

Kang Yang*

Xi’an Jiaotong University
Xi’an, China

yangkangyk@stu.xjtu.edu.cn

Wan Du
University of California, Merced

Merced, USA
wdu3@ucmerced.edu

Xi Zhao
Xi’an Jiaotong University

Xi’an, China
Zhaoxi1@mail.xjtu.edu.cn

Jianhua Zou
Xi’an Jiaotong University

Xi’an, China
jhzou@sei.xjtu.edu.cn

ABSTRACT
This paper aims to predict the apps a user will open on her mobile
device next. Such an information is essential for many smartphone
operations, e.g., app pre-loading and content pre-caching, to save
mobile energy. However, it is hard to build an explicit model that
accurately depicts the affecting factors and their affecting mechanism
of time-varying app usage behavior. This paper presents a deep
reinforcement learning framework, named as DeepAPP, which learns
a model-free predictive neural network from historical app usage
data. Meanwhile, an online updating strategy is designed to adapt
the predictive network to the time-varying app usage behavior. To
transform DeepAPP into a practical deep reinforcement learning
system, several challenges are addressed by developing a context rep-
resentation method for complex contextual environment, a general
agent for overcoming data sparsity and a lightweight personalized
agent for minimizing the prediction time. Extensive experiments on
a large-scale anonymized app usage dataset reveal that DeepAPP
provides high accuracy (precision 70.6% and recall of 62.4%) and
reduces the prediction time of the state-of-the-art by 6.58×. A
field experiment of 29 participants also demonstrates DeepAPP
can effectively reduce time of loading apps.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; • Computing methodologies → Rein-
forcement learning.

KEYWORDS
Mobile Devices, App Usage Prediction, Deep Reinforcement Learn-
ing, Neural Networks

*Both student authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’19, November 10–13, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6950-3/19/11. . . $15.00
https://doi.org/10.1145/3356250.3360038

ACM Reference Format:
Zhihao Shen, Kang Yang, Wan Du, Xi Zhao, and Jianhua Zou. 2019. Deep-
APP: A Deep Reinforcement Learning Framework for Mobile Application
Usage Prediction. In The 17th ACM Conference on Embedded Networked
Sensor Systems (SenSys ’19), November 10–13, 2019, New York, NY, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3356250.
3360038

1 INTRODUCTION
Predicting the applications (apps) that a mobile user may use in
next time slot can provide many benefits on smartphones, such
as app pre-loading [1–3], content pre-fetching [4–6] and resource
scheduling [7]. For instance, by knowing the apps a user may open
in next 5 minutes, we can pre-load the apps in memory slightly in
advance and improve user experience with minimized launch time.
Traditional app prediction models are not designed for such a time-
sensitive prediction, especially people may use multiple apps in the
same time slot.

Most existing app prediction works [1, 8–16] normally predict the
next app by modeling app usage transitions and exploiting contex-
tual information using Markov model [4, 9, 13, 17] or Bayesian
model [11]. They can only provide limited prediction accuracy
due to two reasons. 1) conventional model-based methods assume
app usages can be well modeled by Markov chain or Bayesian
framework. However, app usages are determined by a variety of
factors in the complex contextual environment. It is hard to explicitly
capture the impact of all potential factors by a statistical model. As
a consequence, most existing works [10, 11] only represent the
context by a limited number of semantic labels (i.e., ”Home”, ”Work
place” and ”On the way”). 2) the apps that people will use next have
strong temporal-sequence dependency. It is necessary to consider
the prediction of next apps successively. However, most existing
works [1, 13, 16] predicts the next apps with maximum probabilities
separately, hence ignores the effect of current app might bring to the
future prediction.

To address the above limitations, we develop a Deep Reinforce-
ment Learning (DRL) framework, named as DeepAPP, to learn a
data-driven model-free neural network (also known as an agent in
DRL), which takes the environment context as input and predicts the
apps that will be opened next. We first train a deep neural network
(DNN) agent using historical app usage data on a server and then run
the trained DNN agent on either the server or each user’s phone. The

153

https://doi.org/10.1145/3356250.3360038
https://doi.org/10.1145/3356250.3360038
https://doi.org/10.1145/3356250.3360038
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3356250.3360038&domain=pdf&date_stamp=2019-11-10

SenSys ’19, November 10–13, 2019, New York, NY, USA Shen and Yang, et al.

DNN agent of DeepAPP makes prediction based on a neural network
rather than an explicit model; therefore, it can take the complex
environment context as input. Additionally, with reinforcement
learning, DeepAPP can generate the predicted results according to
the expected reward, which is determined by the future interactions
between user and apps. To incorporate DRL into DeepAPP, we
tackle a set of challenges and develop three novel techniques for
app prediction, including a context-aware DRL input representation
method, a lightweight agent and an agent enhancement scheme.

To enable more accurate app prediction, DeepAPP leverages more
fine-grained representation of the environment context. Besides the
time and currently-opened app [1, 13], DeepAPP leverages the distri-
bution of surrounding Point of Interests (POIs) to capture the location
features of the user. In addition, based on such a representation,
the DNN-based agent can generalize the past experience to new
locations. When a user goes to a new place, the DNN model can still
make prediction according to similar known places.

In order to provide real-time inference, one essential require-
ment of app prediction is short inference latency. One successful
implementation of DRL is Deep Q-Network (DQN), which has been
applied in many applications, like Atari games [18] and mobile
Convolutional Neural Network (CNN) model selection [19]. For
one inference, DQN searches for the best action from all possible
actions. It is efficient for small action spaces (e.g. 2 actions for
Breakout in Atari game), but cannot be used for our app prediction
due to the large action space. For example, if a user has installed
20 apps, the action space will be enormous (C0

20 + C1
20 + ... +

C20
20 = 220 = 1, 048, 576). DQN takes 2.04 seconds to perform one

prediction in our implementation on a 2-core CPU, and it also has a
converge problem during training. To handle this problem, we adopt
a lightweight actor-critic based agent architecture [20] to avoid the
heavy cost of evaluating all possible actions for one inference.

Ideally, we can train a specific DRL model for each individual
user based on her own app usage data. However, it is difficult to
obtain sufficient training data from each user. Additionally, users
may install new apps. It is hard for a trained agent to cover these new
apps during online inference. To solve the data sparsity problem,
DeepAPP first trains a general agent with the data of all available
users (e.g., 443 users in our dataset). We then use the trained agent
for app prediction of every user. During online inference, we keep
updating the agent to a personalized agent for each user based on
her new app usage data. With reinforcement learning, we can update
the parameters of the personalized agent incrementally by new data,
without re-training the DNN model. At the same time, we also update
the general agent periodically (e.g., one day in our implementation)
using the data from all users. Once the general agent is updated, we
also use it to further update each personalized agent by combining
their DNN parameters. As each user has increasingly collected her
own data to update her personalized agent, an adaptive coefficient
is defined to gradually reduce the weight of the general agent in the
update of each personalized agent.

We implement DeepAPP on TensorFlow [21]. We run the per-
sonalized agents of all users independently on a server that contains
2 CPUs. Experiment results demonstrate that two CPU cores are
enough to make an inference within 0.31 seconds and perform one
update of the personalized agent within 3.57 ms. Although such light

Table 1: Examples of app usage data.

UserID Start Time LAC CID AppName Duration (s)

1B2A7 201805*080234 60*8 3*93 Wechat 5
5U2F1 201805*070821 64*2 2*83 Chrome 32

cost of inference and agent update can be totally supported by current
smartphones, we cannot run the TensorFlow version of DeepAPP on
smartphones, since TensorFlow currently does not support mobile
operating systems. We further implement DeepAPP on TensorFlow
Lite [22] to perform inference directly on smartphones.

We first conduct trace-driven validations. Our dataset contains the
app usage records of 21 days from 443 users in a big city. We use
the 14-day data for training and the rest 7-day data for validation.
Cross-validation tests are conducted. We train the general agent
by the training data of all users, and update the personalized agent
incrementally for each user using her testing data. The experiment
results demonstrate that DeepAPP provides precision and recall
of 70.6% and 62.4% respectively, corresponding to a performance
gain of 8.62% and 15.56% over the state-of-the-art solution [16].
DeepAPP also provides a 6.58× inference time reduction compared
with the DQN-based model.

We also recruit 29 volunteers and conduct field experiments
over 55 days by a customized app. The experiment results reveal
that DeepAPP provides precision and recall of 73.2% and 54.1%
respectively in app prediction. With app pre-loading, DeepAPP can
reduce the app loading time by 68.14% on average. More than 85%
of the participants are satisfied with our app prediction system.

In summary, this paper makes following contributions.
• To the best of our knowledge, we are the first to leverage DRL

in app prediction.
• We customize our DRL framework by considering unique

challenges in app prediction, including a context representa-
tion method, a lightweight personalized agent and an agent
enhancement technique by the data of all available users.

• We conduct extensive evaluations based on a large-scale app
usage dataset and field experiments.

2 MOTIVATION
In this section, we first investigate the necessity for app prediction
through questionnaires. We then introduce the data used in this
work for app prediction system. Finally, we briefly introduce the key
concepts of deep reinforcement learning.

2.1 Need for app prediction
We designed and released a questionnaire on a widely used online
questionnaire survey platform, called WJX [23]. Questions are
mainly about the necessity and urgency of an app prediction system.
After 32-day collection, 238 enrolled participants returned their
feedback. We filtered out invalid feedbacks and eventually we got
206 questionnaires. The participants include 65 females and 141
males, aged from 13 to 65. They have various occupations, such as
company employees, civil servants, medical staff, college teachers,
students, etc. The survey results indicate an urgent request for
accurate app prediction. We have the following detailed analysis
of our collected feedback.

154

DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction SenSys ’19, November 10–13, 2019, New York, NY, USA

N
e
tE

a
se

N
e
w

s

Y
e
lp

F
a
c
e
U

Y
o
u
K

u

T
a
o
B

a
o

G
m

a
il

W
e
C

h
a
t

iQ
IY

I

S
e
a
m

le
ss

D
o
o
rD

a
sh

1 2 3 4 5 6 7 8 9 10

App name

0

50

100

150

200

250

N
u
m

b
e
r

o
f

a
p
p
s

u
sa

g
e
s Last week

This week

Figure 1: The number of app
usages of different apps used
by a user in two weeks.

Home Work Shop

Location types

0

0.2

0.4

0.6

P
ro

b
a
b
il

it
y

Game Browser Social

Figure 2: The relationship
between app usages and
environment context.

1.5 2 4 6 8 10 12 14

Shortest time interval (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 3: CDF of the shortest
time interval between the tran-
sitions of app usages of users.

8 16 24 32 40 48

Time interval

40

32

24

16

8

0

A
p
p
 I

D

50

100

150

200

250

Figure 4: The distribution of the
number of app usage records of
different apps in time intervals.

• 76.63 % of them thought it takes a long time from clicking on an
application icon to start using the application;

• 90.77 % of them are willing to use a software that can reduce
waiting time of application loading.

2.2 Cellular data
In this paper, we use an anonymized cellular dataset collected by
a mobile carrier of a city in China. The dataset contains 2,104,369
app usage records of 443 mobile users in 21 days. It covers 36,039
unique applications and 5,156 cell towers. When a user requests
a network service from a mobile app, the request is sent to the
corresponding server via cellular infrastructure. An app usage trace
records the request information observed by the corresponding cell
tower. Table 1 describes the format of our data record, which is
composed of a set of fields, i.e., Anonymized ID (UserID), Start
Time, LAC (Location Area Code), CID (Cell Tower ID), App ID
and Duration. The duration denotes the time that the user has used
a specific app. It is estimated by the start and end time of the
record. Based on LAC and CID, we know that the user is within the
coverage of the cell tower with which her smartphone is associated.
By processing our data, we found the following observations.

Time-varying app usage preference. Figure 1 depicts the num-
ber of app usages of different apps that one user uses in two weeks.
In the first week, she used MeiTuan a lot for online food ordering;
whereas in the next week she turned to DianPing, another top online
food purchase platform, maybe because DianPing provides more
discount in that period. As a result, due to the time-variation of user
preference on different apps, the DNN agent needs to be updated
continuously. We leverage the reinforcement learning to solve the
above problem by learning the app usage preference incrementally.

Context-related app usage. The environment context has an
important impact on the apps that people use. We use our dataset
to investigate the relation between app usages and the environment
context where people use the apps on smartphones. From Figure 2,
we can observe that people tend to use different apps in different
environment context. We leverage the POI distributions nearby the
location of the app usage to represent the environment context.

Real-time app prediction. It is critical to provide the real-time
app prediction for users. If a user switches frequently to different
apps in a short time, the DNN agent needs to update its predicted
result before launching next apps. Figure 3 depicts the distribution
of the shortest time interval between the transitions of different app
usage data of users in a day. As shown, 94.7 % had made short-time

switches less than 2 seconds. Therefore, the DNN agent is required
to have the low time complexity, and thus we propose a lightweight
actor-critic based personalized agent to reduce the prediction time.

Sparse app usage data. Adequate app usage data is also a key
issue to achieve good prediction. However, it is difficult to obtain a
large number of app usages for each single user. For new users, we
even do not have any app usages from her. Figure 4 depicts the gray
value distributions of the number of app usages of different apps of
a user in time intervals in a week. The result reveals that app usages
are scattered over the time intervals. If we always predict those apps
with higher frequency, this sometimes affects the performance. We
maintain a general agent to learn the general app usage behavior
of all users for personalized prediction based on the historical app
usages and continuously-collected app usages of all available users.

2.3 Deep reinforcement learning
Deep reinforcement learning (DRL) is a promising machine learning
approach, which instructs an agent to accomplish a task by trail and
error in the process of interacting with the environment. Four key
elements are defined to describe the learning process of DRL, i.e.,
state, action, policy and reward.

The state s defines the input of an agent, referring to the en-
vironment representation. Different applications define different
states. In app prediction, we define the state as the user’s contextual
information, including her current app, surrounding environment,
and time.

The policy π is the core of the agent, which takes the state as input
to generate an action. It learns a mapping from every possible state
to an action according to the past experience. In DRL, the policy is
implemented as a deep neural network (DNN).

The action a affects the environment. Every action gets a feedback
from the environment. According to the feedback, we calculate a
reward r (s,a), which indicates how good or bad an action a changes
the environment given a specific state s. Based on the reward, a value
function Q(s,a) is defined to update the policy of the agent. The Q
value reflects the long-term effect of an action, e.g., if an action has
a high Q value, the parameters of the DNN agent will be updated to
favor that action. As shown in Eq. 1, Q(s,a) is the long-term reward
that an agent expects to obtain in the future, where rt is the reward
of step t , and λ is the discount factor.

Q(s,a) = E[
∞∑
t=0

λt rt |s0] (1)

155

SenSys ’19, November 10–13, 2019, New York, NY, USA Shen and Yang, et al.

Table 2: Notations used in this paper.

Notation Description
S s State space, state
A a Action space, action
Au The set of apps on a user’s smartphone
r Reward
θµ Parameters of actor network
θQ Parameters of critic network
B Replay buffer
â Proto-action
K Number of nearest neighbors of â
x App feature
l Context feature
t Time feature
k Prediction epoch
ω The length of time slot
p The decrease rate of the balance coefficient

Based on the above elements, the agent can learn to accomplish a
specific task by training an agent with a specific policy, supposing
we have enough transition samples (st ,at , rt , st+1). The agent first
perceives a state s and generates an action a by running the policy
π . Then, the agent obtains a reward r given by the environment and
updates the policy based on the estimate of Q(s,a). In this way, the
agent and the environment interact with each other to modify the
policy. After several iterations, the agent learns a stable policy. In
addition, after each online inference, the agent can also use the above
training process to update the policy of the DNN agent incrementally
based on the new user data.

3 DESIGN OF DEEPAPP
In this section, we introduce an overview of DeepAPP and three key
techniques developed in DeepAPP. Table 2 presents the notations
frequently used in this study.

3.1 Overview
DeepAPP predicts the apps that will be opened by the user in the next
time slot (5 minutes in our current implementation). We perform
prediction at the start of each time slot or at the moment when
the user closes an app (i.e. prediction epoch). Figure 5 depicts the
architecture of our app prediction system, which consists of a back-
end component and a front-end component.

3.1.1 The front-end component. It is implemented on smart-
phones, including two main modules, i.e., a context-sensing module
and a background scheduler. The context-sensing module collects
the context information (i.e. , currently-using app, location and time)
and sends it to the back-end component. Based on the computation
on the back-end component, the predicted result is transmitted back
to the front-end component. The background scheduler performs a
scheduling strategy to pre-load the predicted apps slightly before the
next time slot.

3.1.2 The back-end component. It runs on a server and per-
forms the training and inference of our DNN agents. It also updates
the DNN agents online. The back-end component mainly consists of
five modules as follows.

Figure 5: The architecture of app prediction system.

Context-aware state representation. To accurately describe a
user’s environment context in DeepAPP, we customize the context-
aware state by a combined vector that consists of three key features,
including app feature, context feature and time feature (see details
in Section 3.2).

General agent. In DRL, the agent is used to interact with the
environment. The state of the environment at one moment is repre-
sented by the above environment context. The objective of an agent
is to learn an optimal policy to select an action given a specific state.
Since we do not have sufficient app usage data for each user, we first
train a general agent using the app usage data of all users.

Action space. Based on the perceived state, an agent predicts
which apps a user will open in the next time slot. In particular, the
action is denoted as a 0-1 vector a, where ai = 1 indicates that app i
will be opened in the next time slot. For a general agent, the action
space A contains all feasible apps of all users. An actor-critic based
agent is built to perform real-time inference in a large action space
(see details in Section 3.3).

Reward function. For each action, a reward r is calculated to
evaluate the prediction performance. Based on the reward, the agent
updates its policy for better prediction by modifying its DNN param-
eters. As shown in Eq. 2, we define the reward function as the ratio
between the number of correctly-predicted apps in the next time slot
Nr (obtained from user feedback) and the number of predicted apps
Np (obtained from predicted result). If the number of predicted apps
is 0 and the user does not use any apps in that time slot, we set the
reward to 1. If the number of predicted apps is 0 or all predicted
apps do not use in the predicted time slot, we set the reward to -5.

r =

1, Nr = 0 ∧ Np = 0
Nr /Np , Nr , 0 ∧ Np , 0
−5, Nr = 0 ∨ Np = 0

(2)

Personalized agent. During the online inference, we keep updat-
ing the general agent to a personalized agent for each user according
to the real-time app usage data.

3.1.3 Two-step work flow. Based on the above customized mod-
ules, DeepAPP works in two steps, i.e., the offline training and
the online inference. During the offline training, we train a general
agent with enough app usage transition samples of all available users.
During online inference, the personalized agent is step-wise updated
by optimizing the DNN parameters based on personal app usages to
adapt to the time-varying app usage preference. In order to learn app
usage behaviors of new apps, the general agent is also updated by
app usages of all available users. The updated general agent is further

156

DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction SenSys ’19, November 10–13, 2019, New York, NY, USA

used to update the personalized agent periodically by a diminishing
balance coefficient (see details in Section 3.4).

3.2 Context-aware state representation
At each prediction epoch k, DeepAPP quantifies the context-aware
state as a combined vector to represent current environment context
(i.e. currently-using app, location and time) of a specific user. Specif-
ically, the state is measured as sk = [(xk , lk , tk)], which consists of
three key elements: the app feature xk , the context feature lk and
the time feature tk .

App feature. To maintain the same dimension of input state,
we construct the app feature by calculating transition times from
one certain app to other apps. For a certain app i installed on the
smartphone of a user, we denote the app feature of an app i at the
prediction epoch k as x ik = [x i1k ,x

i2
k , ...,x

in
k], where each x i jk is the

normalized number of transition times of app i transits to app j.
Point of Interest. We adopt the POI information close to a

certain location to represent the context of that area. In geographic
information system, a POI can be a building, a shop, a scenic spot
and so on. We crawled all the POIs of the city from AMap [24] (one
of a leading online map provider), which provides APIs to find POIs
on the map. All POIs are stored in the server-side database. We build
indexes for fast query of POIs around a certain location. In all, our
POI dataset contains over 300,000 POIs. They are classified into 23
main types, including restaurants, shopping, sports, business, etc.

Context feature. We calculate the context feature by the distri-
bution of POIs. For a certain location i of the user, we denote the
location at the prediction epoch k as a feature l ik = [l i1k , l

i2
k , ..., l

im
k]

for m types of POI (23 in our implementation, which corresponds
to the number of category of POI). Each l i jk is the number of POI
category j within the radius of 500 meters. We also normalize the
context feature l ik to represent the location at the prediction epoch k .

For training and data-driven validation, we use our cellular data
and quantify the context feature by the POIs around the cell tower
with which the user’s phone is associated. For online inference, we
obtain the user’s location via her smartphone and take the POIs
around her location into account. By doing so, we do not need the
data or any support from mobile carriers when DeepAPP is running.

Time feature. We construct the time feature as a one-hot feature
tk with the dimension of 24 ∗ 60/ω, where ω is the length of each
time slot (unit in minutes). It is an effective way to discretize time
information. We set the time slot of current app usage to 1, and other
time slots are set to 0.

In our design, new features can be easily added to present the
contextual information of users in more details, such as GPS loca-
tions [13], smartphone status [12] and Wi-Fi information [25, 26].

3.3 Actor-critic agent for app prediction
Deep Q-network (DQN) [18] has been proven to be effective for the
design of policy of the agent in cases of the complex environment.
However, the DQN-based method suffers from the high time com-
plexity problem in the task with large action space [20]. It cannot be
used for online app prediction, since users may switch between apps
frequently less than 2 seconds (see the observations in Section 2.

Recently, some advanced techniques, such as Deterministic Pol-
icy Gradient (DPG) [27] and Deep Deterministic Policy Gradient

(DDPG) [28], have been proposed to operate efficiently on the
continuous space. They directly learn the mapping between the
state space and the action space, and hence avoid to evaluate a
large number of actions. Inspired by the above recent progresses
in reinforcement learning, we propose an actor-critic based agent
architecture for DeepAPP [20, 28].

Figure 6 depicts the design of our proposed actor-critic based
architecture for the policy of both personalized and general agents.
The basic idea is to allow the generalization over action space. We
only need to evaluate a few actions that are close to the optimal
action. By reducing the evaluation times, we minimize the computa-
tion time of one inference in DeepAPP. Specifically, the framework
includes four main components, i.e., a continuous space, an actor
network, a discretizer and a critic network. We first develop the
continuous space which expands from the integer action space. Then,
we leverage the actor network to output the predicted result (proto-
action â) in the continuous space, which may not be in the original
action space A. Next, the predicted result is passed to the discretizer
to find the most likely actions AK in the action space, which are
the actions close to the proto-action â. Finally, we adopt the critic
network to select the action a with highest Q value in AK .

Continuous space. The conventional action space is defined by
a binary vector, in which all bits are ’0’ except one ’1’, referring to
as the specific app that people will be opened in the next time slot or
not. The continuous space is a relaxed version of action space, which
achieves generalization over actions. It maps similar actions into a
close adjacent space. We then can find an approximate solution and
evaluate adjacent actions around it to obtain the optimal predicted
result. Specifically, we expand the action space to a continuous space,
which is defined in the real field rather than the integer field. Each
item in the vector can be a real number between 0 and 1.

Actor network µθ . We design the actor network as µθ (s) that
maps from the context-aware state space S to the action space A,
where µθ is the mapping function defined by parameters θµ . Given
the perceived state s of the environment, this actor network directly
outputs an approximate predicted result, denoted as proto-action
â. By evaluating results around â, we can avoid to search in the
whole action space, and thus reduce the prediction time. However,
proto-action â may not be in the action space A. Therefore, we use
a discretizer to map from â to an action a ∈ A.

Discretizer. Normally, the actions with lower Q values may oc-
casionally fall near the proto-action â, which cause errors in the
predicted result. Additionally, some actions close in the action space
may have different long-term Q values. In the context of these
circumstances, it is not advisable to simply select the closest action
to â as the final result. To avoid selecting an outlier action, we
develop a discretizer, which maps from the continuous space to a set
of adjacent actions AK . As shown in Eq. 3, we enumerate all actions
in A to find K actions AK that are close to the proto-action â.

mina∈A | |a − â | |2
s .t . : ai ∈ {0, 1}, ai ∈ Au

(3)

With Eq. 3, we still have to go through all actions in A. Although the
number of calculations are the same as DQN, the time complexity
of each calculation in Eq. 3 (i.e., addition) is much lower than that
of DQN (i.e., |A| evaluations of the neural network).

157

SenSys ’19, November 10–13, 2019, New York, NY, USA Shen and Yang, et al.

Critic network Qθ . We finally adopt a critic network Qθ (s,a) to
find the action in AK with the maximum Q as our result. Compared
with the DQN-based method that evaluates all actions in A to find
a proper action, we only evaluate a few actions in AK . Specifically,
the critic network takes each action a in AK and the state as input
to find the action with the largest value function Q(s,a) as the final
prediction result, as presented in Eq. 4 .

Q(s,a) = arдmaxa∈AKQ(s,a;θQ) (4)

3.4 Online updating of the agents
Due to the data sparsity problem, we train a general agent with the
app usage data of all users. We then use the general agent to perform
app prediction for each individual user and gradually update it to a
personalized agent using the personal app usage data of each user.
As app usage data are collected from all available users, we also
update the general agent by newly-collected data periodically, and
further use the periodically-updated general agent to enhance the
personalized agent.

3.4.1 Offline training of the general agent. During the offline
training, DeepAPP trains a unified general agent with the app usage
data of all users and uses it for online inference of each user. To
ensure that the general agent can be used for the personalized agent,
we maintain the same structure for these two agents. Their DNN
networks have the same network topology with the same input and
output. For input, we transform the feature of the contextual envi-
ronment into a fixed length vector to represent the state. Regarding
with output, the length of the output dimension is the same for all
users’ models, i.e., the action space is composed of all the possible
apps of all users.

3.4.2 Online update of the general agent. During online in-
ference, we update the general agent at regular time intervals (e.g.,
one day in our implementation). The update normally has two steps,
i.e., the update of critic network and the update of actor network.
First, according to the reward of current step, the agent optimizes
the loss function L to update the critic network. The loss function L
is defined as Eq. 5:

L =
1
N

N∑
i=1

(Qtдt −Q(si ,ai |θQ))
2 (5)

where N is the number of app usage transitions from all users and
the frozen Q value Qtдt is learned by the target networks [18] as
shown in Eq. 6.

Qtдt = ri + λQ(si+1, µ′(si+1 |θµ′)|θQ) (6)

where λ is the discount factor. With back propagation, the critic
network can be easily updated according to the gradient of loss
function ∇θQ L.

We further update the actor network of the agent using Eq. 7:

∇θµ J ≈
1
N

N∑
i=1

∇aQ(s,a |θQ)|s=si ,a=µ(si)∇θµ µ(s |θµ)|si (7)

where µ(s |θµ) is the K predicted results of the actor network and
Q(s,a |θQ) is the evaluations of the K actions calculated by the
critic network with Eq. 4. The gradient in Eq. 7 is calculated by the
derivative rules of compound functions to optimize the parameters
of actor network.

Figure 6: The architecture of the actor-critic agent.

3.4.3 Online update of the personalized agent. The personal-
ized agent has the same updating algorithm as the general agent, as
specified in Eqs. 5 - 7. The only difference is the updating frequency.
We update the personalized agent more frequently at the start of each
time slot (5 minutes in our current implementation) or when the user
closes one app. High updating frequency makes the personalized
agent rapidly adapt to the time-varying app usage preference.

3.4.4 Combination of the personalized agent and the general
agent. We combine the parameters of the actor network θµ in the
general agent and the parameters of the actor network θµд in the
personalized agent as Eq. 8.

θµ = θµ + ηθµд (8)

where a balance coefficient η is adopted to adjust the importance
between the general agent and the personalized agent. As time goes
on, we could obtain more individual app usage data and make good
prediction based on the personalized agent. If we still keep a large
weight of the general agent, the general app usage behaviors learned
by the general agent may overwhelm the personal app usage behavior
of the personalized agent. Therefore, with the increase of prediction
epochs, we decrease η linearly with a decrease rate of p.

3.5 Work flow of DeepAPP
Based on the above designs, we present the work flow of DeepAPP,
which mainly consists of three steps: initialization, offline training
and online inference.

Initialization. At first, we randomly initialize the parameters θµ
of the actor network µθ and the parameters θQ of the critic network
Qθ , which denoted as main networks. If we directly evaluate the
actor and critic networks to obtain the Qtдt value in Eq. 5, the
training process will be unstable [20]. To solve this problem, we
create the copies of actor and critic networks (µ ′θ and Q ′θ) [18],
which denoted as target networks. The target networks have the same
initial parameters with the main networks. The target networks are
updated slower (every 100 prediction epochs in our implementation)
than those of the main networks. The parameters of the updated
target networks will be used to calibrate the main networks during
online stage later. We initialize a replay buffer B [18] to break the
correlation between the app usage sequence.

Offline training. We leverage the offline app usage data from all
available users in the replay buffer B to train networks of the general
agent. We first convert all users’ app usage data into transition
samples (<st ,at , rt , st+1>) and store them into the replay buffer B.
By randomly sample N app usage transitions from B, we optimize
the network parameters as defined in Eq. 5 and Eq. 7.

158

DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction SenSys ’19, November 10–13, 2019, New York, NY, USA

Online inference. During online inference, based on the trained
general agent, the personalized agent performs prediction and up-
dates its policy for better prediction. The parameters of the personal-
ized agent is initialized with the parameters of the general agent.

At each prediction epoch k, DeepAPP first senses the context-
aware state from the front-end component as the input of the actor
network of personalized agent and derives a proto-action âby the
actor network µθ . In order to explore potential better actions, we
also introduce a stochastic exploring mechanism by adding random
noise into the action. Specifically, we add a random noise ϵI to the
proto-action â [28], which has the similar idea as ϵ-greedy [29]. As
ϵ decreases with the prediction epoch, more certain action will be
taken with more training. I is a homotypic vector with action, which
follows the standard uniform distribution (U (0, 1)).

Then, we find K nearest actions of the proto-action âby solving
Eq. 3. The possible actions are passed to the critic network for
evaluating the Q-value of each action. The action with highest Q-
value is selected and passed to background controller at the front-end
component of a specific user. According to the feedback from the
user, the personalized agent calculates the reward to update the
actor and critic networks. In order to limit the updating speed of the
target networks, we adopt soft update technique [18] to stabilize the
parameters of the target networks.

θQ ′ : = τθQ + (1 − τ)θQ

θµ′ : = τθµ + (1 − τ)θµ
(9)

Finally, at every combination cycle, we update the general agent
and then combine it with the personalized agent as Eq. 8.

4 IMPLEMENTATION
In this section, we introduce implementation details of the back-end
component and the front-end component respectively.

4.1 Back-end component
At the back-end side, DeepAPP trains a unified general agent for
all users, and performs inference and update of the personalized
agent for each user. All agents are implemented on TensorFlow [21]
and share with the same network structure. They use a 2-layer fully-
connected feedforward neural network to serve as the actor network,
which has 1000 and 400 neurons in the first and second layer and use
a 2-layer fully-connected neural network, with 400 and 200 neurons
in the first and second layer for the critic network. To alleviate the
over-fitting problem, we introduce an L2 regularization term in the
loss function [30]. Besides, there are a few hyper-parameters to set
in both networks. We conducted a comprehensive empirical study to
find best settings, as shown in Table 3.

The back-end component is implemented on a server, which
contains 2 CPUs. Both CPUs have dual Intel(R) Xeon(R) CPU E5-
2609 v4 @ 1.70GHz with 8 cores. Experiments demonstrate that a
2-core CPU is enough to support to make an inference and perform
an update within 0.31 seconds and 3.57 ms respectively. We also use
a GPU cluster with 2 nodes (12GB memory) to accelerate the offline
training of the general agent, which can save 2.47 × training time
compared with the training on CPUs.

Table 3: Hyper-parameter setting.

Hyper-parameter Setting
Batch size N 32
Number of the offline training iterations 500,000
Future reward discount γ 0.90
The size of replay buffer B 100,000
Learning rate of actor network ∇µ 0.0001
Learning rate of critic network ∇Q 0.001
Soft updating coefficient τ 0.01

4.2 Front-end component
The front-end is implemented as a customized app on smartphones
(our current implementation runs on Android 9.0). The implementa-
tion of the app includes two modules, i.e., a context-sensing module
and a background scheduler.

Context-sensing module. We use the context-sensing module to
obtain the real-time context information of users (e.g. user feedback,
location, time and currently-using app) for the next time prediction.
Note that all sensitive information are acquired on a voluntary basis.
Specifically, we obtain the location information through Location-
Manager provided in Android SDK, and the current foreground
app through AccessibilityEventEvents by accessibility services and
smartphone status through Android logcat.

Background scheduler. We only pre-load apps that may be used
in the next time slot to minimize the energy and memory cost for pre-
loading apps on smartphones. To do so, we develop a background
scheduler, which pre-loads the apps before next time slot according
to the predicted result. In particular, we use getLaunchIntentForPack-
age in Android PackageManager to realize the pre-loading.

4.3 Data transmission
The data transmitted between the back-end component and front-end
component are small in size. The data transmission can be supported
either by WiFi or cellular networks. First, we need to transmit the
context-sensing result from the front-end component to the back-end
component. In each iteration of prediction, we only need to send
about 480 bytes on average, including user feedback, location, time
and currently-using app. The transmission delay is less than 30 ms
on average if cellular networks are used. Since WiFi is faster than
cellular networks, the transmission delay can be further reduced if
WiFi networks are available. At the same time, we need to transmit
the predicted result from the back-end component to the front-end
component. The predicted result is composed of a string of app IDs.
The information can be encapsulated in one packet within 120 bytes.
The transmission delay is 25 ms on average.

4.4 Inference on smartphones
DeepAPP can also make inference on the smartphone of each user,
without the need of a back-end component. This can improve the
scalability of DeepAPP. We use TensorFlow Lite [22] as a solution
to run DeepAPP on smartphones. TensorFlow Lite is a widely-
used developing tool to deploy machine learning models on mobile
devices with low latency and memory cost. We first use all users’
app usage data to train a DNN agent. We export the DNN agent to a
tf.GraphDef file. It ensures that the agent model can communicate
with our DeepAPP app. Finally, we integrate the DNN agent into
our DeepAPP app. Our Android DeepAPP app is written in Java,

159

SenSys ’19, November 10–13, 2019, New York, NY, USA Shen and Yang, et al.

MFU FALCON APPM LSTM DQN DeepAPP

Methods

0

0.2

0.4

0.6

0.8

1
P

re
c
is

io
n
 o

r
R

e
c
a
ll Precision

Recall

Figure 7: Prediction accuracy.

but TensorFlow Lite is implemented in C++. We use a JNI library
provided by TensorFlow Lite to set up I/O interfaces.

Since TensorFlow Lite currently does not support training opera-
tion on mobile devices, we only run DeepAPP for inference, but do
not update the personalized agent on smartphones. If a user chooses
to run DeepAPP locally, she will not need to transmit her data to the
back-end component. Her personalized agent will only be updated
every day based on the general agent trained by all users’ app usage
data at the back-end side. We will evaluate the performance gain of
the general agent in Section 5.1.5.

5 EVALUATION
In this section, we conduct extensive experiments to evaluate Deep-
APP, including data-driven evaluation and a field study.

5.1 Data-driven evaluation
We conduct data-driven evaluations of DeepAPP on the dataset
introduced in Section 2.2. It includes the app usage data of 443
active users, collected from a major mobile carrier of a big city
for a period of 21 days (10 Apr. - 16 Apr., 2018 and 10 May. -
23 May., 2018). We divide the dataset into two parts, i.e., 14-day
data for training and 7-day data for validation. Cross-validations, by
repeating the experiments with different partitions of the training
and validation data, have been conducted.

Performance criteria. We use precision and recall to measure
the app prediction accuracy of DeepAPP. Precision is defined as the
average ratio between the number of correctly-predicted apps and
the number of all predicted apps in the next time slot. Recall is the
average ratio between the number of correctly predicted apps and
the number of real used apps of all users in the next time slot. In
addition, we also measure the average execution time to measure the
efficiency of DeepAPP.

Benchmarks. We compare the prediction accuracy of DeepAPP
with following 5 baselines. All the parameters of baselines are set
to the optimal values according to the empirical experiments on our
dataset.

• MFU. Intuitively, we can always predict the next app as one of the
most frequently used (MFU) M apps, which can be found based
on the number of app usage records of each user in our dataset. M
is set to 5.

• FALCON. Yan et al. [1] provide an effective context-aware app
prediction method by utilizing spatial and temporal features (i.e.
location and time). We derive the location information ("Home",
"Work place" and "On the way") by the method introduced in [31].

0 1 2 3 4 5 6 7

Days since app prediction

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision

Recall

Figure 8: Evolution of prediction accuracy over time.

• APPM. Parate et al. [4] leverage Prediction by Partial Match
(PPM) model [32] for app prediction, which uses the longest app
sequence to compute the probability of the following app.

• LSTM. Xu et al. [16] formulate the app prediction problem as
a multi-label classification problem and propose a LSTM-based
prediction model. We incorporate our context-aware state repre-
sentation into their model.

• DQN. We also implement a DQN-based app prediction scheme.
It is a simple way to leverage deep reinforcement learning in app
prediction. We also implement our other designs, like the context-
aware state and online updating, in this DQN-based scheme.

5.1.1 Prediction accuracy. Figure 7 depicts the average predic-
tion accuracy on the validation data. From the experiment result,
we can see that DeepAPP provides the best prediction accuracy
among other baselines. The reasons are as follows. First, DeepAPP
learns a data-driven model-free agent to make prediction rather
than traditional explicit models. The model-free agent can take
complex environment context as input. Second, with reinforcement
learning, DeepAPP can model the future reward of the apps in the
time slot while other methods cannot, which is unreasonable in the
real scenario. We also find that DeepAPP has similar performance
as the DQN-based scheme. The DNN agent of DeepAPP focuses on
reducing the time complexity of make an inference, which will be
studied in Section 5.1.4.

5.1.2 Evolution of prediction accuracy over time. Figure 8
presents the precision and recall of 443 mobile users on each day
during a 7-day test. The prediction performance improves over time,
which means DeepAPP can adapt well to app usage dynamics by
updating the personalized agent online. The result also confirms the
effectiveness of deep reinforcement learning in solving the time-
varying prediction problem, allowing rapid adaptation to the change
of app usage preference.

5.1.3 Performance gain of the context-aware state. To verify
the effectiveness of our context-aware state representation, we im-
plement another version of DeepAPP (denoted as ”DeepAPP w/o
S”) by only vectorizing the semantic locations (i.e., ”Home”, ”Work
place” and ”On the way”). As depicted in Figure 9, the precision and
recall of DeepAPP is 7.6% and 7.3% higher than those of DeepAPP
w/o S. This is because DeepAPP w/o S cannot learn the app usage
pattern at some locations where users have not been to or do not
have semantic information.

5.1.4 Execution time. DeepAPP involves lightweight computa-
tion in the inference while making prediction. We use app usage data
of all users to test the average prediction time of two DRL-based

160

DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction SenSys ’19, November 10–13, 2019, New York, NY, USA

DeepAPP w/o S DeepAPP
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision

Recall

Figure 9: Context-aware state.

0 0.5 1 1.5 2 2.5 3

Prediction time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

DQN

DeepAPP

Figure 10: Time complexity.

0 2 4 6 8 10

Prediction epochs (10
3
)

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

=0.1
=0.7

DeepAPP w/o G
DeepAPP

(a) Precision

0 2 4 6 8 10

Prediction epochs (10
3
)

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

=0.1
=0.7

DeepAPP w/o G
DeepAPP

(b) Recall

Figure 11: General agent.

Table 4: F-Score with different length of time slot ω.

ω (min) 1 5 10 15 20 25 30
F-Score 0.584 0.589 0.579 0.563 0.564 0.532 0.534

methods (i.e. DQN and DeepAPP). Figure 10 depicts the CDF of
the prediction time. The average prediction time of DeepAPP (0.31
seconds) is far less than that of DQN (2.04 seconds). This indicates
that our lightweight actor-critic based agent can effectively reduce
the prediction time and enable real-time app prediction.

5.1.5 Performance gain of the general agent. We verify the ef-
fectiveness of the general agent in DeepAPP. We implement another
two versions of DeepAPP. The first version discards the general
agent, which denoted as ”DeepAPP w/o G”. The second version
adopts two fixed balance coefficient η values to combine the per-
sonalized agent with general agent while online inference, which
denoted as ”η=0.1” and ”η=0.7”.

Figure 11 depicts prediction details of these three methods during
online learning within 10,000 prediction epochs. With the increase
of epochs, both the precision and recall increase. DeepAPP is consis-
tently higher than the DeepAPP w/o G during online learning. The
results confirm that the general agent succeeds in solving the data
sparseness problem.

Besides, we find that the performance of DeepAPP with a linearly
decreasing η value is superior to that under a fixed η value. For
instance, under a larger η (i.e. 0.7), DeepAPP works well at the
beginning, but weakens at the later stage. With a small η (0.1) and
vice versa. A linearly decreasing η value can always maintain high
precision and recall over time. We adopt a bigger η at the beginning,
which addresses the data sparsity problem. As prediction epochs
increase, we reduce the role of general agent and let the personalized
agent dominated by the individual app usage data.

5.1.6 Parameter settings. We further test the choice of three
parameters in DeepAPP, i.e., the length of time slot ω, the number

0 5 10 15 20 25 30

Length of time slot

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision

Recall

Figure 12: Effect of the length
of time slot ω.

1 0.1 1 5 10 20 30

Number of nearest neighbor (%)

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision

Recall

Figure 13: Effect of number of
nearest neighbors K .

0 2 4 6 8 10 12 14

Days since app prediction

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

-0.01
-0.03

-0.05

-0.07
-0.09

(a) Precision

0 2 4 6 8 10 12 14

Days since app prediction

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

-0.01
-0.03

-0.05

-0.07
-0.09

(b) Recall

Figure 14: Effect of the decrease rate p.
Table 5: F-Score with different K .

K (x% of |A|) 1 0.1% 1% 5% 10% 20% 30%
F-Score 0.519 0.581 0.643 0.662 0.643 0.608 0.560

of nearest neighbors of proto-action K and the decrease rate of the
balance coefficient p.

Length of time slot ω. Figure 12 depicts the performance of
DeepAPP by varying the length of time slot ω from 1 minute to
30 minutes. As ω increases, the precision increases, but the recall
gradually decreases. We select a proper ω by using F-Score [33],
which achieves a balance between the precision and recall. As shown
in Table 4, we can find F-Score reaches its maximum at ω =5, which
is the default in the following experiments.

The number of nearest neighbors K . The motivation of the
number of nearest neighbors of proto-action is to lower the impact
of noisy actions which may occasionally fall near the proto-action.
We conduct an experiment to select a proper K . Figure 13 shows the
variation of accuracy by varying the number of nearest neighbors
K from K = 1 to 30%. As we can see, when K = 1, the accuracy is
worst, which proves the rationality of selecting K-nearest neighbor
to find the optimal action. When K > 1, the technique can filter out
noise actions which occasionally fall near the proto-action, resulting
in the enhancement of the precision and recall of DeepAPP. As
shown in Table 5, we also select a default K = 5% of |A| by using
F-Score [33] as the default setting in the experiments.

The decrease rate p. In our design, we adopt an adaptive bal-
ance coefficient, which gradually reduces the weight of the general
agent in the update of each personalized agent. We evaluate the
performance of DeepAPP with different decrease rate of the balance
coefficient from 0.09 to 0.01. Figure 14 depicts the performance of
DeepAPP under various values of decrease rate with respect to the
prediction epochs. Our method can maintain a high precision and
recall when p is set to 0.09.

161

SenSys ’19, November 10–13, 2019, New York, NY, USA Shen and Yang, et al.

0 5 10 15 20

of filtered dominant apps

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

MFU
FALCON

APPM

DQN
DeepAPP

(a) Precision

0 5 10 15 20

of filtered dominant apps

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

MFU
FALCON

APPM

DQN
DeepAPP

(b) Recall

Figure 15: Effect of dominant apps.

5.1.7 Performance under different scenarios. The above ex-
periment results prove the effectiveness of DeepAPP for our dataset.
We further study the performance of DeepAPP of different attributes,
such as dominant apps, the number of installed apps and the number
of app usage records.

Number of dominant apps. We study the impact of dominant
apps (i.e., the most frequent apps) in the app prediction. We vary the
number of dominant apps for an individual and then re-evaluate the
prediction performance. As shown in Figure 15, the performance of
DeepAPP is best among all benchmark methods, giving the precision
of 65.5% and recall of 46.7%, compared with 41.8% and 21.8% in
FALCON and 47.7% and 27.7% in APPM. The experiment results
indicate that DeepAPP is also effective in predicting apps which are
not used frequently.

Number of installed apps. When a user installs a large number
of apps on smartphones, it will be more difficult to predict the next
app. We explore how DeepAPP performs when the number of the
installed apps (N) on smartphones is different. We first categorize
the number of installed apps into 5 levels, i.e., {N < 10}, {N >=
10 & N < 50} , {N >= 50 & N < 100}, {N >= 100 & N <
200} and {N >= 200}. As shown in Figure 16, the precision and
recall decrease as the number of installed apps increases. Especially,
when the number of installed apps N is less than 10, the precision
and recall are reached 88% and 58%, respectively. For larger N (i.e.,
N >= 200), the precision and recall are only about 60.1% and 40.9%.
The experiment results demonstrate that the fewer the installed apps
on smartphones, the easier for DeepAPP to predict the next apps.

Number of app usage records. The number of app usage records
may have various impacts on the performance. We explore how
DeepAPP performs when the number of app usage records (M) is
different. We categorize the number of app usage records into 5
levels, i.e., {M < 50}, {M >= 50 & M < 100}, {M >= 100 & M <
200}, {M >= 200 & M < 400} and {M >= 400}. Figure 17 depicts
the performance on different number of app usage records. With
the increase of app usage records, the precision and recall are also
improving, because the personalized agent can learn more app usage
pattern when a user has a larger number of app usage records.

5.2 Field study
We also test DeepAPP by field experiments from 17 Sep. to 10
Nov. 2018. Compared with data-driven evaluations, in the field
experiment, we can not only measure the accuracy of DeepAPP,
but also collect the real user experience on DeepAPP. We deploy
a system as the architecture in Figure 5. We recruit 29 participants
and collect app usage records as ground truth. Participants include

40 80 120 160 200

of installed apps

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

MFU
FALCON

APPM

DQN
DeepAPP

(a) Precision

40 80 120 160 200

of installed apps

0.2

0.4

0.6

0.8

1

R
ec

al
l

MFU
FALCON

APPM

DQN
DeepAPP

(b) Recall

Figure 16: Effect of the number of installed apps.

0 100 200 300 400

of app usage records

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

MFU
FALCON

APPM

DQN
DeepAPP

(a) Precision

0 100 200 300 400

of app usage records

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

MFU
FALCON

APPM

DQN
DeepAPP

(b) Recall

Figure 17: Effect of the number of app usage records.

13 females and 16 males, aged from 19 to 49, which have various
occupations such as company employees, college teachers, college
students, etc. After participants agree to take part in the experiment,
we first install the Android application introduced in Section 4.2 on
smartphones and monitor their app usage traces. We also collect their
smartphone status such as power consumption and memory usage for
the analysis of system overhead. At last, all participants successfully
completed the experiment, and in all we collected 76,021 pieces of
app usage records during the 55-day field experiment.

5.2.1 User survey. We ask participants to complete a weekly
questionnaires to collect the feedback on the usability of DeepAPP.
Questionnaires are designed in a Likert scale format [34], which
require participants to rate a statement from ”strongly disagree (1)”
to ”strongly agree (5)”. The results show that 87.51% of users are
satisfied with our app prediction system, which is an alternative proof
that our predictive model is effective and 71.88% of participants
agree that the app can save their time of launching apps by pre-
loading our predicted apps into the memory.

5.2.2 Performance analysis. We analyze the performance of our
field experiment from 3 aspects, i.e., accuracy, latency improvement
and end-to-end prediction time.

Accuracy. We use the app usage data of participants to evaluate
the accuracy of DeepAPP. Figure 18 depicts the evolution of preci-
sion and recall over time during the field experiment. As expected,
like data-driven evaluations, DeepAPP can also quickly adapt to the
time-variation of user preference and achieve high accuracy.

Latency improvement. We use the average ratio of the saved
loading time to the launch time of smartphones without deploying
DeepAPP to evaluate the time reduction on participants’ smart-
phones. We profile the launch time of all installed apps on par-
ticipants’ smartphones. Then, we could obtain the time reduction
according to the correctly-predicted result of the participants. This

162

DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction SenSys ’19, November 10–13, 2019, New York, NY, USA

10 20 30 40 50

Days since app prediction

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision
Recall

Figure 18: Accuracy during the field experiment.

0 20 40 60 80 100

Saved loading time (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Latency improvement

0 1 2

 Prediction time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) End-to-end time

Figure 19: Performance analysis.

measurement ignores the launch time of apps if DeepAPP has pre-
loaded the apps, which is neglectable in practice [2]. Figure 19(a)
shows that our system can reduce the app loading time by 68.14%
on average compared with no pre-loading.

End-to-end prediction time. The end-to-end prediction time is
very important and directly related to user experience. We calculate
the end-to-end prediction delay by the time difference between the
start time of uploading the context information and the end time of
receiving the predicted result, which can be easily obtained by the
Android logcat from participants’ smartphones. From Figure 19(b),
we can see that prediction delay is negligible, i.e., less than 1 seconds
of 80%, including both prediction computation and data transmission
between the back-end component and the front-end component.

5.3 System overhead
DeepAPP may produce two types of overhead, i.e., 1) the power
consumption and memory cost of running DeepAPP prediction and
2) the power consumption and memory cost caused by the apps
pre-loaded by DeepAPP.

5.3.1 Overhead of DeepAPP prediction. We test the overhead
of DeepAPP prediction on 2 participants with the same model
of smartphones (Honor 20 Pro). We implement two versions of
DeepAPP of running app prediction, i.e., making inference on the
back-end server (DeepAPP-B) and making inference on the front-
end (DeepAPP-F).

Power consumption. In order to estimate the power consump-
tion, we estimate the power consumption rate of each app by a
power monitoring application (Accubattery [35]). As depicted in
Figure 20(a), the extra cost of DeepAPP-B and DeepAPP-F are
about 42.48 mAh and 178.87 mAh on average in a day, which can be
almost ignored compared with total battery capacity of smartphones.
At the same time, compared with DeepAPP-F, DeepAPP-B has
less power consumption. This is because DeepAPP-B performs

20 60 100 140 180

Power consuption (mAh)

0

0.2

0.4

0.6

0.8

1

C
D

F

 DeepAPP-B

 DeepAPP-F

(a) Power consumption

0 30 60 90 120

Memory cost (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

 DeepAPP-B

 DeepAPP-F

(b) Memory cost

Figure 20: System overhead of DeepAPP prediction.

70 75 80 85 90

Power consumption (mAh)

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Power consumption

0 100 200 300 400 500 600

Memory cost (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Memory cost

Figure 21: System overhead of app-preloading.

prediction inference and agent updating at the back-end server,
saving the energy consumption of smartphones. The customized
design of the context-aware module in DeepAPP does not cause
additional energy consumption, compared with other systems [1, 11].

Memory cost. Figure 20(b) depicts that the memory cost and
computation requirement of two versions of DeepAPP. The results
reveal that the average memory cost of DeepAPP-B is less than
9.3 MB, and does not consume much extra memory (i.e. 113.6 MB)
during making inference on the front-end. Current smartphones, like
Samsung Galaxy S9 and HUAWEI Mate 10 Pro, have at least 4GB
memory and 8-core CPU, which can totally support DeepAPP online
inference without a back-end support.

5.3.2 Overhead of app pre-loading. The overhead of app pre-
loading is mainly in two aspects: power and memory. We test the
overhead of pre-loading on 4 participants with the same model of
smartphones (HUAWEI Mate 10 Pro).

Power consumption. As apps share hardware components, load-
ing apps simultaneously will save more power than loading apps
separately [36], and thus the power consumption of users actually
consume is less than what we estimate. Figure 21(a) depicts the
estimated average power consumption in different days. We find that
the app consumes less than 2.18% of battery powers of participants’
smartphones on average in a day, which is negligible for the total bat-
tery powers (4000 mAh). The reasons are as follows. First, DeepAPP
does not pre-load unpredictable apps, which will not consume any
additional power consumption. Second, DeepAPP only introduces
the few additional power consumption by misprediction, which can
be ignored by the higher precision of DeepAPP.

Memory cost. Due to app pre-loading will bring extra memory
cost of smartphones, we further test the memory usage on users’
smartphones. With the users’ consent, we monitor the memory usage
of participants and obtain a result in Figure 21(b). As shown, app
pre-loading does not consume much memory on average, i.e. 190.6

163

SenSys ’19, November 10–13, 2019, New York, NY, USA Shen and Yang, et al.

MB of total memory, because the background scheduler only pre-
loads apps that will be used in the next time slot. Besides, if the user
does not use the predicted apps, we will immediately unload the
apps in memory.

6 RELATED WORK
App prediction. Many app prediction methods [1, 8–16, 37] have
been designed for personalized app prediction. Huang et al. [11]
model the app usage transition by a first-order Markov model and
use the contextual information, such as time, location and the latest
used app. Natarajan et al. [9] model the app usage sequences using
a cluster-level Markov model, which segments app usage behaviors
cross multiple users into a number of clusters. Bayesian frame-
work [11] improves the performance of app prediction by combining
different features. PTAN [14] combines various explicit features
such as location semantics (either home or work) and implicit
features such as app usage information. Parate et al. [4] and Zhu et
al. [10] transform the place into semantic location to improve the
performance of app prediction on semantic location. Chen et al. [15]
consider rich context by graph embedding techniques for person-
alized prediction. APPM [4] separately considers the prediction of
a few specific apps with their launch time to prefetch in time on
smartphone. However, most of them build an explicit model, which
cannot capture the impact of all potential factors.

There are also some works that are orthogonal to our work. They
benefit practical apps on smartphones from different perspectives.
SmartIO [3] reduces the application loading delay by assigning
priorities to reads and writes. HUSH [38] unloads background
apps for energy saving automatically. CAS [7] develops a context-
aware application scheduling system that unloads and pre-loads
background applications in a timely manner. ShuffleDog [39] builds
a resource manager to efficiently schedule system resources for
reducing the user-perceived latency of apps.

Deep reinforcement learning. Mnih et al. solve the problem of
stability and convergence in high-dimensional data input using Deep
Q Network (DQN) [18]. Many technologies have been proposed to
improve the performance of DQN. Prioritized experience replay [40]
is put forward to improve the learning efficiency. Previous works
have further extended deep reinforcement learning to continuous
action space and large discrete action space. An actor-critic based
on the policy gradient [28] is presented to solve the continuous
control problem. Mnih et al. [41] propose asynchronous gradient
descent for optimization of deep neural network and show successful
applications on various domains. Arnold et al. [20] present an actor-
critic architecture which can act in a large discrete action space
efficiently. Based on this architecture, our work designs a new actor-
critic based agent for app prediction.

Recently, deep reinforcement learning has been studied and ap-
plied in many domains [42–47]. DSDPS [43] applies DRL for the
distributed stream data processing system based on the previous
experience rather than solving the complicated model. AuTO [44]
leverages a two-tier DRL model based on the long-tail distribution
of data center services to solve the automatic decision-making
of traffic optimization. DRL-TE [46] leverages an efficient DRL-
based control framework to solve the traffic engineering problem
in communication networks. This paper extends the application of
DRL to the app prediction problem.

Cellular data. There are some studies using the same cellular
network request data as our study [48–53]. SAMPLES [48] provides
a framework to identify the application identity according to the net-
work request by inspecting the HTTP header. CellSim [49] extracts
similar trajectories from a large-scale cellular dataset. YU et al. [50]
present a city-scale analysis of app usage data on smartphones. TU et
al. [51] re-identify a user in the crowd by the apps she uses and
quantify the uniqueness of app usage. Wang et al. [52] discover
users’ identifies in multiple cyberspace. However, the above studies
do not leverage the app usage data for real-time app prediction.

7 DISCUSSION
Dataset limitation. The cellular data cannot capture the app usages
that do not make any network requests or make requests through
Wi-Fi networks. However, such a limitation does not impact the
performance much. First, since app usages collect from a large
number of users, DeepAPP can still learn the general app usage
behaviors of different users by the general agent. Second, DeepAPP
updates the personalized agent based on the online app usages, which
can cover all the apps the user opens.

Deployment cost. The deployment cost of DeepAPP is mainly
associated with the expense of back-end infrastructure placement.
The back-end component consists of two modules, i.e. the context
database and two agents. As the kernel of DeepAPP, agents provide
lightweight prediction model for user, which requires adequate com-
puting resources (e.g. CPU) for the running of DeepAPP. Besides,
context database provides the reservation of transition samples and
hence a reliable and effective storage system is available.

Privacy issues. In the data-driven evaluation, the data provider
has anonymized the app usage data by replacing the user identifica-
tion by a hash code. The app usage data only contain anonymized
records of cell tower sequences, without any information relating to
text messages, phone conversations or search contents. Besides, we
randomly select from a large dataset for our dataset, which can also
prevent leaking the mobile users’ privacy.

In the field experiments, DeepAPP collects some private sensitive
data (e.g. contextual information) from volunteers. To protect the
privacy, we anonymize the user identifier in the database. In addition,
since our context feature only need the POI distribution around the
user, we do not need the exact location of the user.

8 CONCLUSION
This paper presents DeepAPP, a deep reinforcement learning frame-
work for mobile app prediction, which predicts the next apps in the
next time slot on her mobile device. By combining a context-aware
state representation method, a personalized agent and a general agent
together, DeepAPP can provide effective and efficient app prediction.
Extensive data-driven evaluations and field experiments demonstrate
high performance gain of DeepAPP.

ACKNOWLEDGEMENTS
We sincerely thank the anonymous shepherd and reviewers for their
valuable comments. Zhihao Shen, Kang Yang, Xi Zhao and Jianhua
Zou are supported by the National Natural Science Foundation of
China Grant No. 91746111.

164

DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction SenSys ’19, November 10–13, 2019, New York, NY, USA

REFERENCES
[1] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app

launching for mobile devices using predictive user context. In ACM MobiSys,
2012.

[2] Xu Ye, Lin Mu, Lu Hong, Giuseppe Cardone, Nicholas Lane, Zhenyu Chen, An-
drew Campbell, and Tanzeem Choudhury. Preference, context and communities:a
multi-faceted approach to predicting smartphone app usage patterns. In ISWC,
2013.

[3] David T. Nguyen, Gang Zhou, Guoliang Xing, Xin Qi, Zijiang Hao, Ge Peng, and
Qing Yang. Reducing smartphone application delay through read/write isolation.
In ACM MobiSys, 2015.

[4] Abhinav Parate, Matthias BÃűhmer, David Chu, Deepak Ganesan, and Ben-
jamin M. Marlin. Practical prediction and prefetch for faster access to applications
on mobile phones. In ACM Ubicomp, 2013.

[5] Paul Baumann and Silvia Santini. Every byte counts: Selective prefetching for
mobile applications. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 1(2):6, 2017.

[6] Yichuan Wang, Xin Liu, David Chu, and Yunxin Liu. Earlybird: Mobile
prefetching of social network feeds via content preference mining and usage
pattern analysis. In ACM MobiHoc, 2015.

[7] Joohyun Lee, Kyunghan Lee, Euijin Jeong, Jaemin Jo, and Ness B. Shroff. Context-
aware application scheduling in mobile systems: what will users do and not do
next? In ACM Ubicomp, 2016.

[8] Hong Cao and Miao Lin. Mining smartphone data for app usage prediction and
recommendations: A survey. Pervasive and Mobile Computing, 37:1–22, 2017.

[9] Nagarajan Natarajan, Donghyuk Shin, and Inderjit S. Dhillon. Which app will you
use next? collaborative filtering with interactional context. In ACM RecSys, 2013.

[10] Hengshu Zhu, Huanhuan Cao, Enhong Chen, Hui Xiong, and Jilei Tian. Exploiting
enriched contextual information for mobile app classification. In ACM CIKM,
2012.

[11] Ke Huang, Chunhui Zhang, Xiaoxiao Ma, and Guanling Chen. Predicting mobile
application usage using contextual information. In ACM Ubicomp, 2012.

[12] Choonsung Shin, Jin Hyuk Hong, and Anind K. Dey. Understanding and prediction
of mobile application usage for smart phones. In ACM Ubicomp, 2012.

[13] Zhung Xun Liao, Shou Chung Li, Wen Chih Peng, Philip S. Yu, and Te Chuan
Liu. On the feature discovery for app usage prediction in smartphones. In IEEE
ICDM, 2014.

[14] Ricardo Baezayates, Di Jiang, Fabrizio Silvestri, and Beverly Harrison. Predicting
the next app that you are going to use. In ACM WSDM, 2015.

[15] Xinlei Chen, Yu Wang, Jiayou He, Shijia Pan, Yong Li, and Pei Zhang. CAP:
Context-aware app usage prediction with heterogeneous graph embedding.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(1):4, 2019.

[16] Shijian Xu, Wenzhong Li, Xiao Zhang, Songcheng Gao, Tong Zhan, Yongzhu
Zhao, Wei-wei Zhu, and Tianzi Sun. Predicting smartphone app usage with
recurrent neural networks. In WASA, 2018.

[17] Vassilis Kostakos, Denzil Ferreira, Jorge Goncalves, and Simo Hosio. Modelling
smartphone usage: a markov state transition model. In ACM UbiComp, 2016.

[18] V Mnih, K Kavukcuoglu, D Silver, A. A. Rusu, J Veness, M. G. Bellemare,
A Graves, M Riedmiller, A. K. Fidjeland, and G Ostrovski. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

[19] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du.
On-demand deep model compression for mobile devices: A usage-driven model
selection framework. In ACM MobiSys, 2018.

[20] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt,
T. Mann, T. Weber, T. Degris, and B. Coppin. Deep Reinforcement Learning in
Large Discrete Action Spaces. ArXiv e-prints, 2015.

[21] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, and Michael Isard.
TensorFlow: a system for large-scale machine learning. In USENIX OSDI, 2016.

[22] TensorFlow Lite. https://tensorflow.google.cn/lite/.
[23] WJX. www.wjx.cn.
[24] AMAP. https://www.amap.com.
[25] Chen Sun, Jun Zheng, Huiping Yao, Yang Wang, and D. Frank Hsu. Apprush:

Using dynamic shortcuts to facilitate application launching on mobile devices.
Procedia Computer Science, 19(19):445–452, 2013.

[26] Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. Ranking fraud detection
for mobile apps:a holistic view. In ACM CIKM, 2013.

[27] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.

[28] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. Computer Science, 8(6):A187, 2015.

[29] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Machine
Learning, 8(3-4):225–227, 1992.

[30] Feiping Nie, Heng Huang, Xiao Cai, and Chris H Ding. Efficient and robust
feature selection via joint âĎŞ2, 1-norms minimization. In NIPS, 2010.

[31] Sibren Isaacman, Richard Becker, RamÃşn CÃąceres, Stephen Kobourov,
Margaret Martonosi, James Rowland, and Alexander Varshavsky. Identifying
important places in people’s lives from cellular network data. In IEEE PerCom,
2011.

[32] J. Cleary and I. Witten. Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications, 32(4):396–402, 1984.

[33] Bjornar Larsen and Chinatsu Aone. Fast and effective text mining using linear-time
document clustering. In ACM SIGKDD, 1999.

[34] Gerald Albaum. The likert scale revisited. Market Research Society. Journal.,
39(2):1–21, 1997.

[35] Accubattery. https://www.accubatteryapp.com/.
[36] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha.

AppScope: application energy metering framework for android smartphones using
kernel activity monitoring. In USENIX ATC, 2012.

[37] Zhung Xun Liao, Yi Chin Pan, Wen Chih Peng, and Po Ruey Lei. On mining
mobile apps usage behavior for predicting apps usage in smartphones. In ACM
CIKM, 2013.

[38] Xiaomeng Chen, Abhilash Jindal, Ning Ding, Yu Charlie Hu, Maruti Gupta, and
Rath Vannithamby. Smartphone background activities in the wild:origin, energy
drain, and optimization. In ACM MOBICOM, 2015.

[39] Gang Huang, Mengwei Xu, Felix Xiaozhu Lin, Yunxin Liu, Yun Ma, Saumay
Pushp, and Xuanzhe Liu. Shuffledog: Characterizing and adapting user-perceived
latency of android apps. IEEE Transactions on Mobile Computing, 16(10):2913–
2926, 2017.

[40] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
Experience Replay. ArXiv e-prints, 2015.

[41] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In ICML, 2016.

[42] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. DRN: A deep reinforcement learning framework for
news recommendation. In WWW, 2018.

[43] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. Model-free control for
distributed stream data processing using deep reinforcement learning. In VLDB,
2018.

[44] Chen Li, Lingys Justinas, Chen Kai, and Liu Feng. AuTO: Scaling deep
reinforcement learning for datacenter-scale automatic traffic optimization. In
ACM SIGCOMM, 2018.

[45] Xianzhong Ding, Wan Du, and Alberto Cerpa. OCTOPUS: Deep reinforcement
learning for holistic smart building control. In ACM BuildSys, 2019.

[46] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold
Liu, and Dejun Yang. Experience-driven networking: A deep reinforcement
learning based approach. In IEEE INFOCOM, 2018.

[47] Zhenfeng Shao, Wenjing Wu, Zhongyuan Wang, Wan Du, and Chengyuan Li.
Seaships: A large-scale precisely annotated dataset for ship detection. IEEE
Transactions on Multimedia, 20(10):2593–2604, 2018.

[48] Hongyi Yao, Gyan Ranjan, Alok Tongaonkar, Yong Liao, and Zhuoqing Morley
Mao. SAMPLES:self adaptive mining of persistent lexical snippets for classifying
mobile application traffic. In ACM MobiCom, 2015.

[49] Zhihao Shen, Wan Du, Xi Zhao, and Jianhua Zou. Retrieving similar trajectories
from cellular data at city scale. arXiv preprint arXiv:1907.12371, 2019.

[50] Donghan Yu, Yong Li, Fengli Xu, Pengyu Zhang, and Vassilis Kostakos.
Smartphone app usage prediction using points of interest. In ACM Ubicomp,
2018.

[51] Zhen Tu, Runtong LI, Yong Li, Gang Wang, Di Wu, Pan Hui, Li Su, and Jin
Depeng. Your apps give you away: Distinguishing mobile users by their app usage
fingerprints. In ACM Ubicomp, 2018.

[52] Huandong Wang, Chen Gao, Yong Li, Zhili Zhang, and Depeng Jin. From
fingerprint to footprint: Revealing physical world privacy leakage by cyberspace
cookie logs. In ACM CIKM, 2017.

[53] Deren Li and Zhenfeng Shao. The new era for geo-information. Science in China
Series F: Information Sciences, 52(7):1233–1242, 2009.

165

https://tensorflow.google.cn/lite/
www.wjx.cn
https://www.amap.com
https://www.accubatteryapp.com/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Need for app prediction
	2.2 Cellular data
	2.3 Deep reinforcement learning

	3 Design of DeepAPP
	3.1 Overview
	3.2 Context-aware state representation
	3.3 Actor-critic agent for app prediction
	3.4 Online updating of the agents
	3.5 Work flow of DeepAPP

	4 Implementation
	4.1 Back-end component
	4.2 Front-end component
	4.3 Data transmission
	4.4 Inference on smartphones

	5 Evaluation
	5.1 Data-driven evaluation
	5.2 Field study
	5.3 System overhead

	6 Related work
	7 Discussion
	8 Conclusion
	References

