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Abstract—This paper aims to predict a set of apps a user will open on her mobile device in the next time slot. Such an information is
essential for many smartphone operations, e.g., app pre-loading and content pre-caching, to improve user experience. However, it is
hard to build an explicit model that accurately captures the complex environment context and predicts a set of apps at one time. This
paper presents a deep reinforcement learning framework, named as DeepAPP, which learns a model-free predictive neural network
from historical app usage data. Meanwhile, an online updating strategy is designed to adapt the predictive network to the time-varying
app usage behavior. To transform DeepAPP into a practical deep reinforcement learning system, several challenges are addressed by
developing a context representation method for complex contextual environment, a general agent for overcoming data sparsity and a
lightweight personalized agent for minimizing the prediction time. Extensive experiments on a large-scale anonymized app usage
dataset reveal that DeepAPP provides high accuracy (precision 70.6 percent and recall of 62.4 percent) and reduces the prediction
time of the state-of-the-art by 6.58x. A field experiment of 29 participants demonstrates DeepAPP can effectively reduce launch

time of apps.

Index Terms—Mobile devices, app usage prediction, deep reinforcement learning, neural networks

1 INTRODUCTION

REDICTING the next applications (apps) that a mobile user

may use in the next time slot can provide many benefits
on smartphones, such as app pre-loading [1], [2], [3], con-
tent pre-caching [4], [5], [6] and resource scheduling [7]. For
instance, by knowing the apps a user may open in next 5
minutes, we can pre-load the apps in memory slightly in
advance and improve user experience with minimized
launch time. However, most app prediction works have
been proposed to predict the next app. They do not consider
when to open the apps, and hence cannot be directly used
for time-sensitive app prediction systems.

Most existing app prediction works [1], [8], [9], [10], [11],
[12], [13], [14], [15], [16] can only provide limited prediction
accuracy due to two reasons. First, most conventional
model-based methods assume app usages can be well mod-
eled by Markov chain [4], [9], [13], [17] or Bayesian frame-
work [11]. However, app usages are determined by a
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variety of factors in the complex contextual environment. It
is hard to explicitly capture the impact of all potential fac-
tors by a statistical model. As a consequence, most existing
works [10], [11] represent the context by a limited number
of semantic labels (i.e., "Home”, “"Work place” and “On the
way”). Second, people may use a set of apps in a time slot.
Different combinations of apps lead to a large number of
prediction results. Existing approaches [4], [16] can only cal-
culate probabilities of the apps that are most likely to use
separately, and predict a set of apps with highest probabili-
ties. However, these approaches ignore relationship among
the predicted apps. In practice, a bundle of apps may
receive higher probabilities than predicting the apps sepa-
rately. For instance, a user may use a shopping app and a
payment app in a combination.

To address the above limitations, we develop a Deep Rein-
forcement Learning (DRL) based framework, named as Deep-
APP, to learn a data-driven model-free neural network (also
known as an agent in DRL), which takes the environment con-
text as input and predicts the apps that will be opened in the
next time slot. We first train a deep neural network (DNN)
agent using historical app usage data on a server and then run
the trained DNN agent on either the server or user’s smart-
phone. The DNN agent of DeepAPP makes prediction based
on a neural network rather than an explicit model; therefore,
it can take the complex environment context as input. Addi-
tionally, with reinforcement learning, DeepAPP learns to
explore the large prediction space automatically and effec-
tively select the best list of apps for the prediction result. To
incorporate DRL into DeepAPP, we tackle a set of challenges
and develop three novel techniques for app prediction,
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including a context-aware DRL input representation method,
a lightweight agent and an agent enhancement scheme.

To enable more accurate app prediction, DeepAPP lever-
ages more fine-grained representation of the environment
context. Besides the time and currently-opened app [1], [13],
DeepAPP leverages the distribution of surrounding Point of
Interests (POIs) to capture the location features of the user.
In addition, based on such a representation, the DNN-based
agent can generalize the past experience to new locations.
When a user goes to a new place, the DNN model can still
make prediction according to similar known places.

In order to provide real-time inference, one essential
requirement of app prediction is short inference latency. One
successful implementation of DRL is Deep Q-Network (DQN)
[18], [19], which has been applied in many applications, like
Atari games and mobile Convolutional Neural Network
(CNN) model selection [20]. For one inference, DQN searches
for the best action from all possible actions. It is efficient for
small action spaces (e.g., 2 actions for Breakout in Atari game),
but cannot be used for our app prediction system due to the
large action space. For example, if a user has installed 20 apps,
the action space will be enormous (CY +Cy +...+
C30 = 2% = 1,048, 576). DQN-based model will take 2.04 sec-
onds to perform one prediction in our implementation on a 2-
core CPU, which is unacceptable in a real-time prediction envi-
ronment. To handle this problem, we adopt a lightweight
actor-critic based architecture [21] to avoid the heavy cost of
evaluating all possible actions for one inference.

Ideally, we can train a specific DRL model for each indi-
vidual user based on her own app usage data. However, it
is difficult to obtain sufficient training data from each user.
Additionally, users may install new apps [22]. It is hard for
a trained agent to cover these new apps during online infer-
ence. To solve the data sparsity problem, DeepAPP first
trains a general agent with the data of all available users
(e.g., 443 users in our dataset). We then use the trained
agent for app prediction of every user. As personal app
usage data are collected in a sequential manner, we also
propose an online learning strategy [23] to keep updating
the agent to a personalized agent for each user based on her
new app usage data. At the same time, we also update the
general agent periodically (e.g., one day in our implementa-
tion) using the app usage data from all users. Once the gen-
eral agent is updated, we also use it to further update each
personalized agent by combining their DNN parameters.
As each user has increasingly collected her own data to
update her personalized agent, an adaptive coefficient is
defined to gradually reduce the weight of the general agent
in the update of each personalized agent.

We implement DeepAPP on TensorFlow [24]. We run
the personalized agents of all users independently on a
server that contains 2 CPUs. Experiment results demon-
strate that two CPU cores are enough to make an infer-
ence within 0.31 second. Although such light cost of
inference and agent update can be totally supported by
current smartphones, we cannot run the TensorFlow ver-
sion of DeepAPP on smartphones, since TensorFlow cur-
rently does not support the training of the DNN model
on mobile operating systems. We further implement
DeepAPP on TensorFlow Lite [25] to perform inference
directly on smartphones.

We first conduct trace-driven validations. Our dataset
contains the app usage records of 21 days from 443 users in
a big city. We use the 14-day data for training and the rest 7-
day data for validation. Cross-validation tests are con-
ducted. We train the general agent by the training data of
all users, and update the personalized agent incrementally
for each user using her testing data. The experiment results
demonstrate that DeepAPP provides precision and recall of
70.6 and 62.4 percent respectively, corresponding to a per-
formance gain of 8.62 and 15.56 percent over the state-of-
the-art solution [16]. DeepAPP also provides a 6.58x infer-
ence time reduction compared with the DQN-based model.

We also recruit 29 volunteers and conduct field experi-
ments over 55 days by a customized app. The experiment
results reveal that DeepAPP provides precision and recall
of 73.2 and 54.1 percent respectively in app prediction. With
app pre-loading, DeepAPP can reduce the app loading time
by 68.14 percent on average. More than 85 percent of the
participants are satisfied with our app prediction system.

In summary, this paper makes following contributions.

e To the best of our knowledge, we are the first to
leverage deep reinforcement learning in app
prediction.

e We customize our DRL-based framework by consid-
ering unique challenges in our app prediction sys-
tem , including a context representation method, a
lightweight personalized agent and an agent
enhancement technique by the data of all available
users.

e We conduct extensive evaluations based on a large-
scale app usage dataset and field experiments.

2 MOTIVATION

In this section, we first investigate the necessity for app pre-
diction through questionnaires. We then introduce the data
used in this work for app prediction system. Finally, we
briefly introduce the key concepts of deep reinforcement
learning.

2.1 Need for App Prediction

We designed and released a questionnaire on a widely used
online questionnaire survey platform, called WJX [26].
Questions are mainly about the necessity and urgency of an
app prediction system. After 32-day collection, 238 enrolled
participants returned their feedback We filtered out invalid
feedbacks and eventually we got 206 questionnaires. The
participants include 65 females and 141 males, aged from 13
to 65. They have various occupations, such as company
employees, civil servants, medical staff, college teachers,
students, etc. The survey results indicate an urgent request
for accurate app prediction. We have the following detailed
analysis of our collected feedback.

e 76.63 percent of them thought it takes a long time
from clicking on an application icon to start using
the application;

e 90.77 percent of them are willing to use a software
that can reduce waiting time of application loading.
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2.2 App Usage Dataset

We use an anonymized app usage dataset collected by a
mobile carrier of a big city in China. When users request
network services from mobile apps, the requests were pas-
sively recorded by the cellular infrastructure. The request
captures the anonymized identification (ID) of each mobile
device, start and end timestamps of the data connection, the
HTTP request or response URL (Uniform Resource Locator)
and the cell tower from which the request was made. In
order to make the data available for our work, we prepro-
cess the data with three steps. First, we infer the apps that
are most likely to generate the URLs according to the map-
ping table of the app and URL provided by the carrier. Sec-
ond, we obtain the app usage duration by merging the
consecutive requests from the same app. Third, we infer the
geographical coordinates that user makes the network
request based on the cell tower position.

In the end, we obtain our dataset contains 2,104,369 app
usage records of 443 mobile users, spans 7 days from April
10, 2018 to April 16, 2018 and 14 days from May 10, 2018 to
May 23, 2018. It covers 36,039 unique applications and 5,156
cell towers. Table 1 describes an example of preprocessed
app usage records, including a set of fields, i.e., anonymized
user identification (UserID), the launch time of the app
(Time), the app that makes the network request (App), the
time duration that the user has used the app (Duration) and
the geographical position of cell tower (Location). By ana-
lyzing our dataset, we found the following observations.

Context-Related App Usages. The environment context has
an important impact on the apps that people use. We use
our dataset to investigate the relation between app usages
and the environment context where people use the apps on
smartphones. From Fig. 1, we can observe that people tend
to use different apps in different environment context. For
example, at home, people are more likely to use Game or
Video apps. Social apps are used more frequently at shop-
ping malls. We leverage the context information nearby the
location of the app usage to represent the environment. We
leverage the POI distributions nearby the location of the
app usage to represent the environment context.

In geographic information system, a POI can be a build-
ing, a shop, a scenic spot and so on. In our work, we

TABLE 1
Examples of App Usage Data
UserID Time App  Duration (s) Location
1B2A7 20180510080234 Wechat 5 34.29,109.13
5U2F1 20180510070821 Chrome 2 34.26,109.03
[ JGame I Social
0.6 [ Browser [_|Video
204
,f:;
~02
0
Home Work Shop

Location types

Fig. 1. The relationship between app usages and environment context.
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Fig. 2. CDF of the shortest time interval between the transitions of app
usages of users.
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Fig. 3. The distribution of the number of app usage records of different
apps in time intervals.

obtained the POI dataset of over 300,000 POIs of the city
from AMap [27] (one of a leading online map provider),
which provides APIs to find POIs on the map. They are clas-
sified into 23 main POI categories, including restaurants,
shopping, sports, business, etc.

Real-Time App Prediction. It is critical to provide real-time
app prediction for users. If a user switches frequently to dif-
ferent apps in a short time, the DNN agent needs to update
its predicted result before launching next apps. Fig. 2
depicts the distribution of the shortest time intervals
between the transitions of different app usage data of users
in a day. As shown, nearly all the shortest time intervals of
users are between 1 and 2 seconds. Therefore, the DNN
agent is required to have the low time complexity, and thus
we propose a lightweight actor-critic based personalized
agent to reduce the prediction time.

Sparse App Usage Data. Adequate app usage data is also a
key issue to achieve good prediction. However, it is difficult
to obtain a large number of app usage data for each single
user. At the beginning of the deployment, we even do not
have any app usages. Fig. 3 depicts the gray value distribu-
tions of the number of app usages of different apps of a user
in time intervals in a week. The result reveals that app
usages are scattered over the time intervals. If we always
predict those apps with higher frequency, this sometimes
affects the performance. We maintain a general agent to
learn the general app usage behavior of all users for person-
alized prediction based on the historical app usages and
continuously-collected app usages of all available users.

Time-Varying App Usage Preference. Fig. 4 depicts the
number of app usages of different apps that one user uses
in two weeks. In the first week, she used MeiTuan a lot for
online food ordering; whereas in the next week she turned
to DianPing, another top online food purchase platform,
maybe because DianPing provides more discount in that
period. As a result, due to the time-variation of user prefer-
ence on different apps, the DNN agent needs to be updated
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Fig. 4. The number of app usages of different apps used by a user in two
weeks.

continuously. We propose an online updating strategy to
learn the app usage preference incrementally.

2.3 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a promising machine
learning approach, which instructs an agent to accomplish a
task by trail and error in the process of interacting with the
environment [28]. Four key elements are defined to describe
a learning process of DRL, i.e., state, action, policy and
reward.

The state s defines the input of the agent, referring to
the environment representation. Different applications
define different states. In DeepAPP, we define the state
as the user’s contextual information, including her cur-
rently-using app, surrounding environment, and current
time.

The policy 7 is the core of the agent, which takes the state
as input to generate an action. It learns a mapping from
every possible state to an action according to the past expe-
rience. In DRL, the policy is implemented as a deep neural
network (DNN).

The action a affects the environment. Every action gets a
feedback from the environment. According to the feedback,
we can obtain a reward r(s, a), which indicates how good
or bad an action a changes the environment given a specific
state s. Based on the reward, a value function Q(s, a) is also
defined to optimize the policy of the agent. Estimated @
value reflects the long-term effect of an action, e.g., if an
action has a high @ value, the parameters of the DNN agent
will be updated to favor that action. As shown in Eq. (1),
Q(s,a) is the long-term reward that an agent expects to
obtain in the future, where 7, is the reward of step ¢, and A
is the discount factor of future rewards.

Z)\tmso] . (1)

t=0

Q(s,a)=FE

Based on the above elements, the agent can learn to
accomplish a specific task by training an agent with a spe-
cific policy, supposing we have enough transition sam-
ples (st @, 71, se+1). The agent first perceives a state s and
generates an action a by running the policy 7. Then, the
agent obtains a reward r given by the environment and
updates the policy based on the estimate of Q(s,a). In
this way, the agent and the environment interact with
each other to modify the policy. After several iterations,
the agent learns a stable policy. In addition, after each
online inference, the agent can also use the above training

TABLE 2
Notations Used in This Paper
Notation = Description
Ss State space, state
Aa Action space, action
r Reward
6., 0¢ Parameters of the actor network and the critic
network
B App usage database
a Proto-action
K Number of nearest neighbors of a
x App feature
l Context feature
t Time feature
k Prediction epoch
1) The length of time slot
T The combination cycle of the general agent and
the personalized agent
P The decrease rate of the balance coefficient

process to update the policy of the DNN agent incremen-
tally based on the new user data.

3 DESIGN oF DEEPAPP

In this section, we introduce an overview of DeepAPP and
three key techniques developed in DeepAPP. Table 2
presents the notations frequently used in this study.

3.1 Overview

DeepAPP predicts the apps that will be opened by the user
in the next time slot (5 minutes in our current implementa-
tion). We perform predictions at the start of each time slot
or at the moment when the user closes an app (i.e., predic-
tion epoch). Fig. 5 depicts the architecture of our app predic-
tion system, which consists of a back-end component and a
front-end component.

3.1.1 The Front-End Component

It is implemented on smartphones, including two main
modules, i.e., a context-sensing module and a background
scheduler. The context-sensing module collects the context
information (i.e., currently-using app, location and time)
and sends it to the back-end component. Based on the com-
putations on the back-end component, the predicted results
are transmitted back to the front-end. The background
scheduler performs a scheduling strategy to pre-load the
predicted apps slightly before the next time slot.

Front-end component| | Back-end component

context
mfor

Cotiteat-geuging Context environment
Single user All users

l l

module

Context-awarestate repr
state 1 reward state ln:\\'a((l
Background action Per lized T epochs General
Scheduler agent update agent

Fig. 5. The architecture of app prediction system.
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3.1.2 The Back-End Component

It runs on a server and performs the training and inference
for our DNN agents. It also updates the DNN agents in an
online manner. The back-end component mainly consists of
five modules as follows.

Context-Aware State Representation. To accurately describe
a user’s environment context in DeepAPP, we customize
the context-aware state by a combined vector that consists
of three key features, including app feature, context feature
and time feature (see details in Section 3.2).

General Agent. In DRL, the agent is used to interact with
the environment. The state of the environment at one
moment is represented by the above environment context.
The objective of an agent is to learn an optimal policy to
select an action given a specific state. Since we do not have
sufficient app usage data for each user, we first train a gen-
eral agent using the app usage data of all users.

Action Space. Based on the perceived state, an agent pre-
dicts a set of apps that a user will open in the next time slot.
In particular, the action is denoted as a binary vector a,
where a; = 1 indicates that app ¢ will be opened in the next
time slot. For a general agent, the action space A contains all
feasible apps of all users. An actor-critic based agent is built
to perform real-time inference in a large action space (see
details in Section 3.3).

Reward Function. After the agent takes an action at the
state s, i.e., predicting a set of apps to a user, the user
provides her feedback. She can click, or not click on these
apps, and the agent receives immediate reward r accord-
ing to the user’s feedback, which is calculated to evaluate
the prediction performance. Based on the reward, the
agent updates its policy for better prediction by modify-
ing its DNN parameters. As shown in Eq. (2), we define
the reward function as the ratio between the number of
correctly-predicted apps in the next time slot IV, (obtained
from user feedback) and the number of predicted apps N,
(obtained from predicted result). If the number of pre-
dicted apps is 0 and the user does not use any apps in
that time slot, we set the reward to 1. If the number of
predicted apps is 0 or all predicted apps do not use in the
predicted time slot, we set the reward to -5. Note that N,
will not be greater than NN, because the number of cor-
rectly-predicted app is always less than the number of
predicted apps.

1, N,=0AN,=0
N,/N,, N,#0AN,#0. (2)
-5, N,=0VN,=0

r =

Personalized Agent. During the online inference, we keep
updating the general agent to a personalized agent for each
user according to the real-time app usage data.

3.1.3 Two-Step Work Flow

Based on the above customized modules, DeepAPP works in
two steps, i.e., the offline training and the online inference.
During the offline training, we train a general agent with
enough app usages of all available users. During online
inference, the personalized agent is step-wise updated by
optimizing the DNN parameters based on personal app

usages to adapt to the time-varying app usage preference. In
order to learn app usage behaviors of new apps, the general
agent is also updated by app usages of all available users.
The updated general agent is further used to update the per-
sonalized agent periodically (see details in Section 3.4).

3.2 Context-Aware State Representation

At each prediction epoch k, DeepAPP quantifies the con-
text-aware state as a combined vector to represent current
environment context (i.e., currently-using app, context and
time) of a specific user. Specifically, the state is measured as
si, = [(zg, I, tr)], which consists of three key elements: the
app feature zi, the context feature [, and the time feature ¢;.

App Feature. To maintain the same dimension of input
state, we construct the app feature by calculating transition
times from one certain app to other apps. For a certain app ¢
installed on the smartphone of a user, we denote the app
feature of an app ¢ at the prediction epoch k as zj =
[zi!, 212, ..., z}"], where each z/ is the normalized number of
transition times of app 4 transits to app j.

Context Feature. We adopt the POI information close to a
certain location to represent the context of that area. Specifi-
cally, we calculate the context feature by the distribution of
POlIs. For a certain location ¢ of the user, we denote the loca-
tion at the prediction epoch k as a feature I, = [Ii}, 112, ..., [7"]
for m different categories of POI (23 in our implementation).
The [}/ is the number of POIs for category j within the radius
of 500 meters of location i. We normalize the context feature
I to represent the location at the prediction epoch k.

For the data-driven validation, we use our cellular data
and quantify the context feature by the POIs around the cell
tower with which the user’s phone is associated. For online
inference, we obtain the user’s location via her smartphone
and take the POIs around her location into account. By
doing so, we do not need the data or any support from
mobile carriers when DeepAPP is running.

Time Feature. In light of the correlation between the app
usage and the usage time [29], [30], we construct the time
feature as a one-hot feature ¢, with the dimension of 24 x
60/w, where w is the length of each time slot (unit in
minutes). It is an effective way to discretize time informa-
tion. We set the time slot of current app usage to 1, and
other time slots are set to 0.

In our design, new context features can be easily added
to present the contextual information of users in more
details, such as GPS locations [13], smartphone status [12]
and Wi-Fi information [31], [32].

3.3 Actor-Critic Agent for App Prediction

Deep Q-network based methods [18], [19] have been proven
to be effective for the design of the policy of the agent in
case of the complex environment. In general, DON has two
main architectures. For the first architecture, it takes only
the state space and outputs Q-values of all actions, which is
suitable for the problem with small action space (e.g., play-
ing Atari). The second takes the state and the action as the
input of neural networks and outputs the Q-value corre-
sponding to this action. However, this architecture needs to
estimate the Q-values of all actions respectively, corre-
sponding to |.A| times of evaluations of the neural network,
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@& Proto

Action d

Fig. 6. The architecture of the actor-critic agent.

where |A] is the size of action space. This causes high time
complexity (O(n)). Therefore, DON-based methods cannot
be used for DeepAPP, which has a large action space since
users may use different combination of apps in one time
slot.

Recently, some advanced techniques, such as Determin-
istic Policy Gradient (DPG) [33] and Deep Deterministic Pol-
icy Gradient (DDPG) [34], have been proposed to operate
efficiently on the continuous space. They directly learn the
mapping between the state space and the action space, and
hence avoid to evaluate a large number of actions. Inspired
by the above recent progresses in reinforcement learning,
we propose an actor-critic based agent architecture for
DeepAPP [21], [34], which operates efficiently with a large
action space.

Fig. 6 depicts the design of our proposed actor-critic
based architecture for the policy of both personalized and
general agents. The basic idea is to allow the generalization
over action space. We only need to evaluate a few actions
(i.e., K in our implementation) that are close to the optimal
action. By reducing the evaluation times, we minimize the
computation time of one inference in DeepAPP. Specifically,
the architecture includes four main components, i.e., a con-
tinuous space, an actor network, a discretizer and a critic
network. We first develop the continuous space which
expands from the integer action space. Then, the actor net-
work takes the represented contextual information as input
and outputs the predicted result (proto-action a) in the con-
tinuous space, which may not be in the original integer
action space A. Next, the predicted result is passed to the
discretizer to find the most likely K actions set Ag in the
action space, which are the actions close to the proto-action
a. Finally, we adopt the critic network to select the optimal
set of apps a with highest () value in Ag.

Continuous Space. The conventional action space is
defined by a binary vector, in which all bits are ‘0" except
one ‘1, referring to as the specific apps that people will be
opened in the next time slot or not. We design a continuous
space [21], which is a relaxed version of the original action
space, which achieves generalization over actions. It maps
similar actions into a close adjacent space. We then can find
an approximate solution and evaluate adjacent actions
around it to obtain the optimal predicted results. According
to our customized design of action space for app prediction,
we can easily achieve this. Specifically, we expand the
action space to a continuous space, which is defined in the
real field rather than the integer field. Each item in the vec-
tor can be a real number between 0 and 1.

Actor Network 9. We design the actor network as u?(s)
that maps from the context-aware state space S to the action
space A, where pf is the mapping function defined by

parameters 6,,. Given the state s of the environment, the
actor network directly outputs an approximate predicted
result, denoted as proto-action a. By evaluating the actions
around a, we can avoid to search in the whole action space,
and thus reduce the prediction time of our system. How-
ever, proto-action & may not be in the action space A. There-
fore, we use a discretizer to map from a to an action a € A.

Discretizer. Normally, the actions with lower () values
may occasionally fall near the proto-action @, which causes
errors in the predicted result. Additionally, some actions
close in the action space may have different long-term @
values. In the context of these circumstances, it is not advis-
able to simply select the closest action to & as the final result.
To avoid selecting an outlier action, we develop a discre-
tizer, which maps from the continuous space to a set of adja-
cent actions Ag. As shown in Eq. (3), we enumerate all
actions in A to find K actions Ay that are close to the proto-
action a.

minaeAHa - d||2

st a; € {0,1}, ®)

a; € Ay,

where A, is the set of apps on a user’s smartphone. With
Eq. (3), we use euclidean distance to estimate an action
instead of evaluating the value function in the form of neu-
ral network. This leads to much low time complexity for
one estimation. Moreover, we also use a nearest neighbor
algorithm [35] to reduce the overall evaluation times, which
takes the time complexity of O(log(n) to find the best action.

Critic Network Q°. We finally adopt a critic network to
find the action in Ax with the maximum () as our result.
The critic network is the other neural network Q%(s,a),
which returns the @ value for each action a € Ak, like
DQN. Compared with the DQN-based methods that evalu-
ate all actions in A to find a proper action, we only evaluate
a few actions in Ag. Specifically, the critic network takes
each action a in Ax and the state as input to find the action
with the largest value function Q(s, a) as the final prediction
result, as presented in Eq. (4).

Q(s,a) = argmazeca, Q(s, a;0). 4)

3.4 Online Updating of the Agents

Due to the data sparsity problem, we train a general agent
with the app usage data of all users at the beginning. We
then use the general agent to perform app prediction for
each individual user and gradually update it to a personal-
ized agent using the personal app usage data of each user.
As app usage data are collected from all available users, we
also update the general agent by newly-collected data peri-
odically, and further use the periodically-updated general
agent to enhance the personalized agent.

3.4.1  Offline Training of the General Agent

During the offline training, DeepAPP trains a unified gen-
eral agent with the app usage data of all users. Then, Deep-
APP leverages the pre-trained model for the initialization
for online inference of each user. To ensure that the general
agent can be used for the personalized agent, we maintain
the same structure for these two agents. Their DNN
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networks have the same network topology with the same
input and output. For input, we transform the feature of the
contextual environment into a fixed length vector to repre-
sent the state. Regarding with output, the length of the out-
put dimension is the same for all users’ models, ie., the
action space is composed of all the possible apps of all users.

3.4.2 Online Updating of the General Agent

During online inference, we update the general agent at reg-
ular time intervals (one day in our implementation). The
online updating of DeepAPP normally has two steps, i.e.,
the update of critic network and the update of actor
network.

First, the agent optimizes the loss function L to update
the critic network based on the long-term expected reward
@, which could be estimated by the interaction between the
user and apps. The loss function L is defined as Eq. (5)

1 N
L= 572 (Que = Qs ail6e))’ (5)

where N is the number of app usage transitions from all
users and the frozen () value @ is learned by the target
networks [18] as shown in Eq. (6).

Qigt = 10 + AQ(Siv1, o (5:4116,)]0q), (6)

where ) is the discount factor. With back propagation, the
critic network can be easily updated according to the gradi-
ent of loss function VQQL.

We further update the actor network of the agent using
Eq. (7)

1 N
VOMJ zNi:zlVaQ(S’a’|0Q)‘5:51-41:/4(51')VOMM(S‘GV')|$i’ (7)

where u(s|0,) is the K predicted results of the actor net-
work and Q(s,alf) is the evaluations of the K actions cal-
culated by the critic network with Eq. (4). The gradient in
Eq. (7) is calculated by the derivative rules of compound
functions to optimize the parameters of actor network.

3.4.3 Online Updating of the Personalized Agent

The personalized agent has the same updating algorithm as
the general agent, as specified in Eqs. (5), (6), and (7). The
only difference is the updating frequency. We update the
personalized agent more frequently at the start of each
time slot (5 minutes in our current implementation) or
when the user closes one app. High updating frequency
makes the personalized agent rapidly adapt to the time-
varying app usage preference.

3.4.4 Combination of the Personalized Agent and the
General Agent

We combine the parameters of the actor network 6, in the
general agent and the parameters of the actor network 6,
in the personalized agent as Eq. (8).

0y =0, +nby,, ®)

I
App usages I | State Environment
20—% : Observe s,
R | | T T .
I
I
I
General Agent : Personalized Agent Action aj
® Initialize, o o N
e e : e e 0
oo ® I @ cete © Reward 7y,
I
Offline stage : Online stage

Fig. 7. The work flow of DeepAPP.

where a balance coefficient 7 is adopted to adjust the impor-
tance between the general agent and the personalized agent.
As time goes on, we could obtain more individual app
usage data and make good prediction based on the person-
alized agent. If we still keep a large weight of the general
agent, the general app usage behaviors learned by the gen-
eral agent may overwhelm the personal app usage behavior
of the personalized agent. Therefore, with the increase of
prediction epochs, we decrease n linearly with a decrease
rate of p.

3.5 Work Flow of DeepAPP

We present the work flow of DeepAPP in Fig. 7, which
mainly consists of two stages: offline training stage and
online stage. We first randomly initialize the parameters 6,
of the actor network ¢ and the parameters 6 of the critic
network Qo, which denoted as main networks. If we directly
evaluate the actor and critic networks to obtain the Q4
value in Eq. (5), the training process will be unstable [36].
To address this problem, we create the copies of actor and
critic networks (1 and Q") [18], which denoted as target
networks. The target networks have the same initial param-
eters with the main networks. The target networks are
updated slower (every 100 prediction epochs in our imple-
mentation) than those of the main networks. The parame-
ters of the updated target networks will be used to calibrate
the main networks during online stage later. At the same
time, the networks represented by DNNs require the input
data to be independent and identically distributed (i.i.d),
but the training data (app usages) are highly related, lead-
ing to training instability. Hence, we also develop an app
usage database B [18] to break the correlation between the
app usage sequences.

Offline Stage. As depicted in the left part of Fig. 7, we
leverage the offline app usage data from all the available
users in the app usage database B to train the networks of
the general agent. We first convert all users” app usage data
into transition samples (<s;,a;,r;, s;i11>) and store them
into B. By randomly sample N app usage transitions from
B, we optimize the network parameters as defined in
Egs. (5) and (7).

Online Stage. As the right part of Fig. 7 depicts, the per-
sonalized agent performs prediction and updates its net-
work for better prediction accuracy based on the initial
trained general agent. At each prediction epoch k, Deep-
APP first obtains the context-aware state s; from the envi-
ronment sensed by the front-end component as the input
of the personalized agent and derives a proto-action d; by
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the actor network u?. In order to explore potential better
actions, we introduce a stochastic exploring mechanism
by adding random noise into the action. Specifically, we
add a random noise el to the proto-action d; [34], which
has the similar idea as e-greedy [37]. As e decreases with
the prediction epoch, more certain action will be taken
with more training. I is a homotypic vector with action,
which follows the standard uniform distribution (U (0, 1)).

Then, we find K nearest actions of the proto-action ;. by
solving Eq. (3). The possible actions are passed to the critic
network for evaluating the Q-value of each action. The
action with highest ()-value is selected and passed to back-
ground controller at the front-end component of a specific
user. According to the feedback from the user, the personal-
ized agent calculates the reward r; to update the actor and
critic networks.

As introduced in the initialization stage, in order to
obtain a stable estimate of @, value, we update the target
networks every 100 prediction epochs. In order to limit the
updating speed of the target networks, we adopt soft
update technique [18] to stabilize the parameters of the tar-
get networks.

Og: =100+ (1 —1)bg ©)
0, =10, +(1-1)0,.
Finally, at every T’ combination cycle, we update the gen-

eral agent and then combine it with the personalized agent
as Eq. (8).

4 IMPLEMENTATION

In this section, we introduce implementation details of the
back-end component and the front-end component respec-
tively. The source code of DeepAPP is available on the
website [38].

4.1 Back-end Component

At the back-end side, DeepAPP trains a unified general
agent for all users, and performs inference and update of
the personalized agent for each user. All agents are
implemented on TensorFlow [24] and share with the
same network structure. They use two 2-layer fully-con-
nected feedforward neural networks for the actor network
and the critic network. This leads to the total number of
parameters of our model H:|S|+ H;|A|+ Hs|A| + B|S| +
B|A| + H1H,, corresponding to the space complexity of
O(n?). Among which, |S| is the dimension of input vector,
|A| is the dimension of output vector, H; and H, are the
number of neurons of 2-layer fully-connected feedfor-
ward neural network, B is the maximum size of app
usage dataset. In our implementation, we set H; = 1000
and H,; = 1000 for the actor network, and H; = 400 and
H, = 200 for the critic network.

We adopt ReLu activation function for the fully-con-
nected neural networks, and Tanh activation function for
the output layer. To alleviate the over-fitting problem, we
introduce an L, regularization term in the loss function [39],
besides the regularization coefficient of loss of actor net-
work is different from critic network’s. Besides, there are a
few hyper-parameters to set in both networks. We

TABLE 3
Hyper-Parameter Settings

Hyper-parameter
Batch size IV 32

Setting

Number of the offline training iterations 500,000
Future reward discount A 0.90
The maximum size of app usage database B 100,000
Learning rate of actor network Vu 0.0001
Learning rate of critic network V@ 0.001
Soft updating coefficient t 0.01

conducted a comprehensive empirical study to find best set-
tings, as shown in Table 3.

The back-end component is implemented on a server,
which contains 2 CPUs. Both CPUs have dual Intel(R)
Xeon(R) CPU E5-2609 v4 @ 1.70 GHz with 8 cores.
Experiments demonstrate that a 2-core CPU is enough to
support to make an inference within 0.31 second. We
also use a GPU cluster with 2 nodes (12 GB memory) to
accelerate the offline training of the general agent, which
can save 2.47x training time compared with the training
on CPUs.

4.2 Front-End Component

The front-end is implemented as a customized app on
smartphones (our current implementation runs on
Android 9.0). The implementation of the app includes
two modules, i.e., a context-sensing module and a back-
ground scheduler.

Context-Sensing Module. We use the context-sensing mod-
ule to obtain the real-time context information of users (e.g.,
user feedback, location, time and currently-using app) for
the next time prediction. Note that all sensitive information
are acquired on a voluntary basis. Specifically, we obtain
the location information through LocationManager provided
in Android SDK, and the current foreground app through
AccessibilityEventEvents by accessibility services and smart-
phone status through Android logcat.

Background Scheduler. We only pre-load the apps that may
be used next to minimize the energy and memory cost of
pre-loading apps on smartphones. To do so, we develop a
background scheduler, which pre-loads the apps before
next time slot according to the predicted results. In particu-
lar, we use getLaunchlntentForPackage in Android Package-
Manager to realize the pre-loading.

4.3 Data Transmission

The data transmitted between the back-end component and
front-end component are small in size. The data transmis-
sion can be supported either by Wi-Fi or cellular networks.
First, we need to transmit the context-sensing result from
the front-end component to the back-end component. In
each iteration of prediction, we only need to send about 480
bytes on average, including user feedback, location, time
and currently-using app. The transmission delay is less
than 30 ms on average if cellular networks are used. Since
Wi-Fi is faster than cellular networks, the transmission
delay can be further reduced if Wi-Fi networks are avail-
able. At the same time, we need to transmit the predicted
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TABLE 4
Parameter Settings
Parameter Setting
The length of time slot w 5 minutes
The number of nearest neighbors of proto-action K 5% of |A|
The combination cycle 7' one day
The decrease rate of balance coefficient p 0.09

result from the back-end component to the front-end com-
ponent. The predicted result is composed of a string of app
IDs. The information can be encapsulated in one packet
within 120 bytes. The transmission delay is 25 ms on
average.

4.4 Inference on Smartphones

DeepAPP can support making inference on the smartphone
of each user, without the need of a back-end component.
This improves the scalability of DeepAPP. We use Tensor-
Flow Lite [25] as a solution to run DeepAPP on smart-
phones. TensorFlow Lite is a widely-used developing tool
to deploy machine learning models on mobile devices with
low latency and memory cost. To implement the DNN agent
on the smartphone, three operations have to be performed,
i.e,, training a unified general agent, converting the agent to
a TensorFlow Lite format, and integrating the model in the
app. We first use all users’ app usage data to train a DNN
agent. We export the DNN agent to a tf.GraphDef file by the
interface (tensorflow.gfile.FastGFile) provided by TensorFlow
Lite. It ensures that the agent model can communicate with
our app. Finally, we integrate the DNN agent into our cus-
tomized app.

Since TensorFlow Lite currently does not support train-
ing operation on mobile devices [40], we only run DeepAPP
for inference, but do not update the personalized agent on
smartphones. If a user chooses to run DeepAPP locally, she
will not need to transmit her data to the back-end compo-
nent. However, without further updating, the system per-
formance may decline over time.

5 DATA-DRIVEN EVALUATION

We first conduct data-driven evaluations of DeepAPP on
the dataset introduced in Section 2.2. It includes the app
usage data from a period of 21 days. The parameter set-
tings of DeepAPP are shown in Table 4. We use these
settings by default in the following experiments. In Sec-
tion 5.4, we explain how we set these parameters to the
best values.

5.1 Experiment Settings

Training and Testing. We divide the dataset into two parts,
i.e., 14-day data for training and 7-day data for validation.
Cross-validations, by repeating the experiments with differ-
ent partitions of the training and validation data, have been
conducted.

Performance Criteria. We use precision and recall to mea-
sure the app prediction accuracy. Precision is defined as the
average ratio between the number of correctly-predicted
apps and the number of all predicted apps in the next time

1
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Fig. 8. Prediction accuracy.

slot. Recall is the average ratio between the number of cor-
rectly predicted apps and the number of real used apps of
all users in the next time slot. In addition, we also measure
the average execution time to measure the efficiency.

Benchmarks. We compare the prediction accuracy of
DeepAPP with following 5 baselines. All the parameters of
baselines are set to the optimal values according to the
empirical experiments on our dataset.

e MFU. Intuitively, we can always predict the next
apps as the most frequently used (MFU) M apps,
which can be found based on the number of app
usage records of each user in our dataset. M is set to
5 in our implementation.

e FALCON. Yan et al. [1] develop an effective context-
aware app prediction model by utilizing context fea-
tures (i.e., app, location and time). In view of the spe-
cial localization method of our dataset (cellular-
based localization), we derive the location informa-
tion ("Home”, "Work place” and “On the way”) by
the method introduced in [41]. In that work, the
authors proposed a cluster-based technique for ana-
lyzing cellular-based dataset to identify important
locations for users.

e APPM. Parate et al. [4] first leverage Prediction by
Partial Match (PPM) model [42] to predict next apps
and use the distribution of the usage time of the
apps to infer the app usage time. We keep the apps
in the next time slot as the predicted results.

o LSTM. Xu et al. [16] formulate the app prediction
problem as a multi-label classification problem and
propose a LSTM-based model to predict the most
likely apps. We select the apps with the probabilities
higher than 0.8 as the predicted results. We also
incorporate our context-aware state into their model.

e DQN. We also implement a DQN-based app predic-
tion scheme [18]. It is an inefficient way to leverage
deep reinforcement learning in app prediction. We
also implement our other designs, like the context-
aware state and online updating, in this DQN-based
scheme.

5.2 Overall Performance

We first present the prediction accuracy of DeepAPP on our
dataset.

5.2.1

Fig. 8 depicts the average prediction accuracy on the vali-
dation data. From the experiment result, we can see that

Prediction Accuracy

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on March 17,2023 at 07:27:18 UTC from IEEE Xplore. Restrictions apply.



SHEN ET AL.: DEEPAPP: A DEEP REINFORCEMENT LEARNING FRAMEWORK FOR MOBILE APPLICATION USAGE PREDICTION 833

—

F0.81 .
L
~
5 0.6 - a
=
204r -
] .
§ 0.2r X —=—Precision -
A~ --a-Recall

0 L L L L L L L

0 1 2 3 4 5 6 7
Days since app prediction

Fig. 9. Evolution of prediction accuracy over time.

[IPrecision
=08 Il Recall
= 0.6
g
=04
E
£0.2
0
DeepAPP w/o S DeepAPP

Fig. 10. Context-aware state.

DeepAPP provides the best prediction accuracy among
other baselines. The reasons are as follows. First, Deep-
APP learns a data-driven model-free agent to make pre-
diction rather than traditional explicit models (Markov
chains and Bayesian framework). The data-driven policy
of the prediction agent can take complex environment
context as input. Second, with reinforcement learning,
DeepAPP can learn to explore the large prediction space
automatically and effectively and select the best set of
apps for the prediction result simultaneously, while
other methods can only predict the apps with highest
probabilities separately. This ignores relationship among
the predicted apps, which is unreasonable in the real
scenario. We also find that DeepAPP has similar perfor-
mance as the DQN-based scheme. The specific design of
the DNN agent of DeepAPP focuses on reducing the
time complexity of make an inference, which will be
studied in Section 5.3.2.

5.2.2 Evolution of Prediction Accuracy Over Time

Fig. 9 presents the precision and recall of all mobile users on
each day during a 7-day test. The prediction performance
improves over time, which means DeepAPP can adapt well
to app usage dynamics by updating the personalized agent
online. The result also confirms the effectiveness of online
update strategy in solving the time-varying prediction prob-
lem, allowing rapid adaptation to the change of app usage
preference.

5.3 Effectiveness of the Proposed Modules
In this subsection, we evaluate the effectiveness of the pro-
posed three modules in DeepAPP.

5.3.1 Performance Gain of the Context-Aware State

To verify the effectiveness of our context-aware state repre-
sentation, we implement another version of DeepAPP
(denoted as "DeepAPP w/o S”) by only vectorizing the
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semantic locations (i.e., "Home”, "Work place” and “On the
way”). As depicted in Fig. 10, the precision and recall of
DeepAPP is 7.6 and 7.3 percent higher than those of Deep-
APP w/o S. This is because DeepAPP w/o0 S cannot learn
the app usage behaviors at some contexts where users have
not been to or do not have semantic information.

5.3.2 Fast Prediction Time of Actor-Critic Agent

DeepAPP has the ability of fast inference compared with the
basic DON model. We use app usage data of all users to test
the average prediction time of two DRL-based methods
(i.e., DON and DeepAPP). Fig. 11 depicts the CDF of the
prediction time. The average prediction time of DeepAPP
(0.31 seconds) is far less than that of DQN (2.04 seconds).
This indicates that our lightweight actor-critic based agent
can effectively reduce the prediction time and enable real-
time app prediction.

5.3.3 Performance Gain of the General Agent

We verify the effectiveness of the general agent in Deep-
APP. We implement two versions of DeepAPP. The first
version discards the general agent, which denoted as
"DeepAPP w/o G”. The second version adopts two fixed
balance coefficient n values to combine the personalized
agent with general agent while online inference, which
denoted as "n=0.1" and "n=0.7".

Fig. 12 depicts prediction details of these three methods
during online learning within 10,000 prediction epochs.
With the increase of epochs, both the precision and recall
increase. DeepAPP is consistently higher than the DeepAPP
w/0 G during online learning. The results confirm that the
general agent succeeds in solving the data sparseness
problem.

Besides, we find that the performance of DeepAPP
with a linearly decreasing n value is superior to that
under a fixed 5 value. For instance, under a larger » (i.e.,
0.7), DeepAPP works well at the beginning, but weakens
at the later stage. With a small n (0.1) and vice versa. A
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TABLE 5
Ratio of the Training Data to the Validation Data
Ratio 9:12 11:10 14:7 15:6 18:3
Precision 61.9% 67.3% 70.6% 69.2% 67.8%
Recall 52.6% 59.1% 62.4% 61.7% 59.0%

linearly decreasing n value can always maintain high pre-
cision and recall over time. We adopt a bigger n at the
beginning, which addresses the data sparsity problem. As
prediction epochs increase, we reduce the role of the gen-
eral agent and let the personalized agent dominated by
the individual app usage data.

5.4 Parameter Settings

We test the choices of four parameters in DeepAPP, i.e.,
the ratio of the training data to the validation data, the
length of time slot w, the number of nearest neighbors of
proto-action K and the decrease rate of the balance coef-
ficient p.

Ratio of the Training Data to the Validation Data. Table 5
presents the variation of accuracy as the ratio of the
training data to the validation data varies. We discover
that the increase of ratio improves the accuracy, but
shows a downward trend when the ratio is larger than
14:7. This is because more training data will learn more
app usage patterns, but may cause over-fitting of our
predictive model. Therefore, we select the ratio at 14:7
with best performance.

Length of Time Slot w. Fig. 13 depicts the performance of
DeepAPP by varying the length of time slot @ from 1 min-
ute to 30 minutes. As w increases, the precision increases,
but the recall gradually decreases. We select a proper
using F-Score [43], which achieves a balance between the
precision and recall. As depicted in Table 6, we can find
the F-Score reaches its maximum at w =5. This also means
that in real scenarios, a 5-minute time slot should be
recommended.

The Number of Nearest Neighbors K. The motivation of the
number of nearest neighbors of proto-action is to lower
the impact of noisy actions which may occasionally fall near
the proto-action. We conduct an experiment to select a
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Fig. 14. Effect of number of nearest neighbors K.
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proper K. Fig. 14 shows the variation of accuracy by vary-
ing the number of nearest neighbors K from 1 to 30 percent
of |A|. As depicted, when K =1, the accuracy is worst,
which proves the rationality of selecting K nearest neighbor
to find the optimal action. When K > 1, the technique can
filter out noise actions which occasionally fall near the
proto-action, resulting in the enhancement of the precision
and recall of DeepAPP. As shown in Table 7, we also select
a default K = 5% of |.A| using F-Score [43] as the default set-
ting in the experiments.

The Decrease Rate p. In our design, we adopt an adaptive
balance coefficient, which gradually reduces the weight of
the general agent in the update of each personalized agent.
We evaluate the performance of DeepAPP with different
decrease rate of the balance coefficient from 0.09 to 0.01.
Fig. 15 depicts the performance of DeepAPP under various
values of decrease rate with respect to the prediction
epochs. Our method can maintain high precision and recall
when p is set to the largest. This indicates that a larger
decrease rate p should be considered in the real application
scenario.

5.5 Robustness
In this section, we evaluate the system robustness of Deep-
APP according to different attributes of training data, i.e.,
the number of dominant apps, the number of installed apps
and the number of app usage records.

Impact of the Number of Dominant Apps. The dominant
app refers to the most frequent apps of an individual. If a

TABLE 6 TABLE 7
The F-Score With Different Length of Time Slot o The F-Score With Different K
 (min) 1 5 10 15 20 25 30 K (x% of | A|) 1 01% 1% 5% 10% 20% 30%
F-Score 0.584 0.589 0.579 0.563 0564 0532 0.534 F-Score 0.519 0.581 0.643 0.662 0.643 0.608 0.560
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Fig. 17. Effect of the number of installed apps.

user only uses several apps frequently, the prediction
model can always predict these apps each time, making it
easier to predict. On the contrary, if a user involves cross-
use of various types of apps, it will be difficult to predict.
In this experiment, we study the impact of number of
dominant apps on the accuracy of app prediction. We fil-
ter out the app usage records that are triggered by the
dominant apps.

As depicted in Fig. 16, the different approaches have a
severe performance degradation in precision and recall as
the filtered number of dominant apps increases. For exam-
ple, when the number equals to 10, the app prediction preci-
sion is about 55.1 percent and the recall is 39.2 percent. This
indicates that DeepAPP works effective in the scenarios of
low diversity of app usages.

Impact of the Number of Installed Apps. We also investigate
the impact of the number of installed apps. When a user
installs a large number of apps on smartphones, it will be
more difficult to predict the next apps. We categorize the
number of installed apps into 5 levels. Fig. 17 depicts the
experiment results. As shown, the precision and recall
decrease sharply as the number of installed apps increases.
Especially, when the number of installed apps is less than
10, the precision and recall are reached 88 and 58 percent,
respectively. For a larger value (>200), the precision and
recall are only 60.1 and 40.9 percent. The experiment results
demonstrate that Deep APP works better in the case of fewer
installed apps on smartphones.

Impact of the Number of App Usage Records. The number of
app usage records that are used for training the model may
have impacts on the performance. We explore how Deep-
APP performs when the number of app usage record is dif-
ferent. We categorize the number of app usage records into
5 levels, i.e., {< 50}, {> 50 & < 100}, {> 100 & <200}, {>200
& <400} and {>400}. Fig. 18 depicts the performance on dif-
ferent number of app usage records.

As shown, with the increase of app usage records, the
precision and recall are also enhanced. For example, as the
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Fig. 18. Effect of the number of app usage records.

number of app usage records increases from 50 to 200, both
the precision and recall values increase sharply (e.g., 71.0
percent in precision and 56.0 percent in recall). This indi-
cates the minimum training samples for our system to
achieve an acceptable accuracy is about 200.

6 FIELD STUDY

We also test DeepAPP by field experiments from 17
Sep. to 10 Nov. 2018. Compared with data-driven evalu-
ations, in the field experiment, we can not only measure
the accuracy of DeepAPP, but also collect the real user
experience on DeepAPP. We recruit 29 participants and
collect app usage records as ground truth. Participants
include 13 females and 16 males, aged from 19 to 49,
which have various occupations such as company
employees, college teachers and students, etc. After par-
ticipants agree to take part in the experiment, we install
the Android application introduced in Section 4.2 on
smartphones and monitor their app usage traces. We
also collect their smartphone status such as power con-
sumption and memory usage for the analysis of system
overhead. At last, all participants successfully com-
pleted the experiment, and in all we collected 76,021
pieces of app usage records during the 55-day field
experiment.

As mentioned in Section 4.4, the mobile devices can only
support making inference of the neural network model cur-
rently, not training and updating. To this end, we deploy a
system as the architecture in Fig. 5. In this way, the partici-
pants upload their app usage data to our server. We use the
app usage data of all available users to train a general agent
as the initial prediction model for each subject. During the
field study, we use the personal data of each subject to
update each subject’s model on the server side for better
prediction.

6.1 User Survey

We ask participants to complete a weekly questionnaires to
collect the feedback on the usability of DeepAPP. Question-
naires are designed in a Likert scale format [44], which
require participants to rate a statement from “strongly dis-
agree (1)” to ”strongly agree (5)”. The results show that
87.51 percent of users are satisfied with our app prediction
system, which is an alternative proof that our predictive
model is effective and 71.88 percent of participants agree
that the app can save their time of launching apps by pre-
loading our predicted apps into the memory.
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6.2 Performance Analysis

We analyze the performance of our field experiment from 3
aspects, i.e., accuracy, latency improvement and end-to-end
prediction time.

Accuracy. Fig. 19 depicts the evolution of precision and
recall over time during the field experiment of DeepAPP.
As expected, like the data-driven evaluations, DeepAPP can
also quickly adapt to the time-variation of user preference
and achieve stable accuracy over time.

Latency Improvement. We use the average ratio of the
saved loading time to the launch time of smartphones
without deploying DeepAPP to evaluate the time reduc-
tion on participants’ smartphones. We profile the launch
time of all installed apps on participants’ smartphones.
Then, we could obtain the time reduction according to
the correctly-predicted result of the participants. This
measurement ignores the launch time of apps if Deep APP
has pre-loaded the apps, which is neglectable in prac-
tice [2]. Fig. 20a shows that our system can reduce the
app loading time by 68.14 percent on average compared
with no pre-loading.

End-to-End Prediction Time. The end-to-end prediction
time is very important and directly related to user experi-
ence. We calculate the end-to-end prediction delay by the
time difference between the start time of uploading the con-
text information and the end time of receiving the predicted
result, which can be easily obtained by the Android logcat
from participants” smartphones. From Fig. 20b, we can see
that prediction delay is negligible, i.e., less than 1 seconds of
80 percent, including both prediction computation and data
transmission between the back-end component and the
front-end component.

6.3 System Overhead

DeepAPP may produce two types of overhead, i.e., 1) the
power consumption and memory cost of running DeepAPP
prediction and 2) the power consumption and memory cost
caused by the apps pre-loaded by DeepAPP. Because it's

1 1
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Fig. 21. System overhead of DeepAPP prediction.

difficult to directly measure the power consumption from
Android, we measure the actual power consumption of
apps by using a widely-used power monitoring application
(AccuBattery [45]) in the existing works [46], [47], which
supports to obtain the power consumption using the battery
management system in smartphones since Android 5.0.

6.3.1 Overhead of DeepAPP Prediction

We test the overhead of DeepAPP prediction on 2 partici-
pants with the same model of smartphones (Honor 20 Pro)
on Android 9.0. We implement two versions of DeepAPP of
running app prediction, i.e., making inference on the back-
end server (denoted as DeepAPP-B) and making inference
on the front-end (denoted as DeepAPP-F).

Power Consumption. As depicted in Fig. 21a, the extra
cost of DeepAPP-B and DeepAPP-F are about 42.48 mAh
and 178.87 mAh on average in a day. Compared with
DeepAPP-F, DeepAPP-B has less power consumption.
This is because DeepAPP-B performs prediction inference
and agent updating at the back-end server, saving the
power consumption of smartphones. The customized
design of the context-aware module in DeepAPP does not
cause additional power consumption, compared with
other systems [1].

Memory Cost. Fig. 21b depicts that the memory cost and
computation requirement of two versions of DeepAPP. The
results reveal that the average memory cost of DeepAPP-B
is less than 9.3 MB, and does not consume much extra mem-
ory (i.e., 113.6 MB) during making inference on the front-
end. Current smartphones, like Samsung Galaxy S9 and
HUAWEI Mate 10 Pro, have at least 4 GB memory and 8-
core CPU, which can totally support DeepAPP online infer-
ence without a back-end support.

6.3.2 Overhead of App Pre-Loading

The overhead of app pre-loading is in two aspects: power
and memory. We also test the overhead of pre-loading on 4
participants with the same model of smartphones (HUA-
WEI Mate 10 Pro).

Power Consumption. As apps share hardware compo-
nents, loading apps simultaneously will save more power
than loading apps separately [48], and thus the power con-
sumptions of users are less than what we estimate. Fig. 22a
depicts the estimated average power consumption in differ-
ent days. We find that the app consumes less than 2.18 per-
cent of battery powers of participants’ smartphones on
average in a day. The reasons are as follows. First, Deep APP
does not pre-load unpredictable apps, which will not
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Fig. 22. System overhead of app-preloading.

consume any additional power consumption. Second,
DeepAPP only introduces the few additional power con-
sumption by misprediction due to the high precision of
DeepAPP.

Memory Cost. Due to app pre-loading will bring extra
memory cost of smartphones, we further test the memory
usage on users’ smartphones. With the users’ consent, we
monitor the memory usage of participants and obtain a
result in Fig. 22b. As shown, app pre-loading does not con-
sume much memory on average, i.e., 190.6 MB of total mem-
ory, because the background scheduler only pre-loads apps
that will be used in the next time slot. Besides, if the user
does not use the predicted apps, we will immediately
unload the apps in memory.

7 RELATED WORK

App Prediction. Many app prediction methods [1], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [49] have been
designed for personalized app prediction. Huang et al.
[11] model the app usage transition by a first-order Mar-
kov model and use the contextual information, such as
time, location and the latest used app. Natarajan ef al. [9]
model the app usage sequences using a cluster-level
Markov model, which segments app usage behaviors
cross multiple users into a number of clusters. Bayesian
framework [11] improves the performance of app predic-
tion by combining different features. PTAN [14] com-
bines various explicit features such as location semantics
(either home or work) and implicit features such as app
usage information. Parate ef al. [4] and Zhu et al. [10]
transform the place into semantic location to improve
the performance of app prediction. Chen et al. [15] con-
sider rich context by graph embedding techniques for
personalized prediction. AppUsage2Vec [50] considers
app attention, user personalized characteristics in app
usage and temporal information for app prediction and
propose a generic model to address the cold-start prob-
lem, which the model does not have sufficient data to
make reliable prediction [22]. APPM [4] separately con-
siders the prediction of a few specific apps with their
launch time to prefetch in time on smartphone. How-
ever, most of them only predict the next app, without
considering the launch time.

There are also some works that are orthogonal to our
work. They benefit practical apps on smartphones from dif-
ferent perspectives. SmartlO [3] reduces the application
loading delay by assigning priorities to reads and writes.
HUSH [51] unloads background apps for energy saving

automatically. CAS [7] develops a context-aware applica-
tion scheduling system that unloads and pre-loads back-
ground applications in a timely manner. ShuffleDog [52]
builds a resource manager to efficiently schedule system
resources for reducing the user-perceived latency of apps.

Deep Reinforcement Learning. Mnih et al. solve the problem
of stability and convergence in high-dimensional data input
using Deep Q Network (DQN) [18]. Many technologies
have been proposed to improve the performance of DQN.
Double Q-learning [19] is put forward to handle overestima-
tions of action values. Wang et al. [53] develop a dueling
DQN architecture that presents state values and action
advantages separately to promote the generalization of dif-
ferent actions. Previous works have further extended deep
reinforcement learning to continuous action space and large
discrete action space. An actor-critic based on the policy
gradient [34] is presented to solve the continuous control
problem. Mnih et al. [54] propose asynchronous gradient
descent for optimization of deep neural network and show
successful applications on various domains. Arnold et al.
[21] present an actor-critic architecture which can act in a
large discrete action space efficiently. Based on this architec-
ture, our work designs a new actor-critic based agent for
app prediction.

Recently, deep reinforcement learning has been studied
and applied in many domains [55], [56], [57], [58], [59], [60],
[61]. DSDPS [56] applies DRL for the distributed stream
data processing system based on the experience rather than
solving the complicated model. AuTO [57] leverages a two-
tier DRL model based on the long-tail distribution of data
center services to solve the automatic decision-making of
traffic optimization. DRL-TE [59] leverages an efficient
DRL-based control framework to solve the traffic engineer-
ing problem in communication networks. This paper
extends the application of DRL to the app prediction.

Cellular Data. There are some studies using the same cel-
lular network request data as our study [62], [63], [64], [65],
[66], [67], [68]. SAMPLES [62] provides a framework to
identify the application identity according to the network
request by inspecting the HTTP header. CellSim [63]
extracts similar trajectories from a large-scale cellular data-
set. Yu et al. [64] present a city-scale analysis of app usage
data on smartphones. TU et al. [65] re-identify a user in the
crowd by the apps she uses and quantify the uniqueness of
app usage. Wang et al. [66] discover users’ identifiers in
multiple cyberspace. However, the above studies do not
leverage the app usage data for real-time app prediction.

8 DisCusSION

Limitations. DeepAPP has several limitations. First, the cel-
lular data cannot capture the app usages that do not make
any network requests or make requests through Wi-Fi net-
works. However, such a limitation does not impact the per-
formance much. Since app usages collect from a large
number of users, DeepAPP can still learn the general app
usage behaviors of different users by the general agent.
Moreover, DeepAPP updates the personalized agent based
on the online app usages, which can cover all the apps the
user opens.
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Second, our system relies on back-end component for
model training and updating, and such an over-the-top ser-
vice hinders our system from being used on large scale
users. However, with the help of current device-side deep
learning developing tool TensorFlow Lite, we can still
deploy our general prediction model on the smartphone for
inference at the expense of accuracy degradation over time.
In addition, it is encouraging that our system can be used as
a standalone application in the future, where the hardware
performance will be further enhanced and more powerful
device-side deep learning developing frameworks can be
developed.

Deployment. The deployment of DeepAPP is mainly asso-
ciated with the expense of back-end infrastructure place-
ment. The back-end component consists of two modules,
i.e., the context database and two agents. As the kernel of
DeepAPP, agents provide fast prediction model for user,
which requires adequate computing resources (e.g., CPU)
for the running of DeepAPP. Besides, context database pro-
vides the reservation of training samples and hence a reli-
able and effective storage system is available.

Discomfort Caused by Energy Consumption. DeepAPP
will bring about power consumption of the mobile devi-
ces, especially when making inference on the front-end
(as depicted in Fig. 21). This may affect the user’s experi-
ence, e.g., overheat, decreased usage time, etc. To avoid
that, we could leverage the DNN compression techni-
ques (e.g., weight compression, convolution decomposi-
tion, etc) to reduce the model complexity. We leave it for
future work.

Privacy Issues. In the data-driven evaluation, the data pro-
vider has anonymized the app usage data by replacing the
user identification by a hash code. The app usage data only
contain anonymized records of cell tower sequences, with-
out any information relating to text messages, phone con-
versations or search contents. Besides, we randomly select
from a large dataset for our dataset, which can also prevent
leaking the mobile users’ privacy.

In the field experiments, DeepAPP collects some private
sensitive data (e.g., contextual information) from volun-
teers. To protect the privacy, we anonymize the user identi-
fier in the database. In addition, since our context feature
only need the POI distribution around the user, we do not
need the exact location of the user.

9 CONCLUSION

This paper presents DeepAPP, a deep reinforcement learn-
ing framework for mobile app prediction, which predicts
the next apps in the next time slot on her mobile device. By
combining a context-aware state representation method, a
personalized agent and a general agent together, Deep APP
can provide effective and efficient app prediction. Extensive
data-driven evaluations and field experiments demonstrate
high performance gain of DeepAPP.
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