
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

DMM: A Deep Reinforcement Learning based Map
Matching Framework for Cellular Data

Zhihao Shen, Kang Yang, Xi Zhao, Jianhua Zou, Wan Du, Junjie Wu

Abstract—This paper presents a novel map matching frame-
work that adopts deep learning techniques to map a sequence
of cell tower locations to a trajectory on a road network.
Map matching is an essential pre-processing step for many
applications, such as traffic optimization and human mobility
analysis. However, most recent approaches are based on hidden
Markov models (HMMs) or neural networks that are hard
to consider high-order location information or heuristics ob-
served from real driving scenarios. In this paper, we develop
a deep reinforcement learning based map matching framework
for cellular data, named as DMM, which adopts a recurrent
neural network (RNN) coupled with a reinforcement learning
scheme to identify the most-likely trajectory of roads given a
sequence of cell towers. To transform DMM into a practical
system, several challenges are addressed by developing a set of
techniques, including spatial-aware representation of input cell
tower sequences, an encoder-decoder based RNN network for
map matching model with variable-length input and output,
and a global heuristics-driven reinforcement learning based
scheme for optimizing the parameters of the encoder-decoder
map matching model. Extensive experiments on a large-scale
anonymized cellular dataset reveal that DMM provides high map
matching accuracy and fast inference time.

Index Terms—Map matching, Deep reinforcement learning,
Location-based services

I. INTRODUCTION

Cellular data are a set of location sequences of cell towers
collected by mobile carriers, with which the mobile phones
have been associated. They have become a way of taking the
pulse of a population, or the pulse of a city and processed for
many applications of urban computing and smart cities [1]–
[5], such as transportation analysis [2], [3] and human mobility
analysis [5]–[7]. An essential processing step of the above
applications is map matching that transforms the large-scale
offline collected cell tower sequences into road trajectories on
a road map. Efficient map matching algorithms are necessary

Z. Shen, J. Zou are with the School of Electronic and Information
Engineering, Xi’an Jiaotong University, Guangdong Xi’an Jiaotong University
Academy, and Shaanxi Engineering Research Center of Medical and Health
Big Data, Xi’an 710049, China.
E-mail: szh1095738849@stu.xjtu.edu.cn, jhzou@sei.xjtu.edu.cn

K. Yang and W. Du are with the Department of Computer Science and
Engineering, University of California, Merced, CA 95340 USA.
E-mail: kyang73@ucmerced.edu, wdu3@ucmerced.edu

X. Zhao is with the School of Management, Xi’an Jiaotong University, and
the Key Lab of the Ministry of Education for process control & Efficiency
Egineering, Xi’an 710049, China.
E-mail: Zhaoxi1@mail.xjtu.edu.cn

J. Wu is with Beihang University, Beijing Key Laboratory of Emergency
Support Simulation Technologies for City Operations, and MoE Key Labora-
tory of Complex System Analysis and Management Decision.
E-mail: wujj@buaa.edu.cn

Xi Zhao is the first corresponding author and Jianhua Zou is the second
corresponding author.

TABLE I: Comparison over different map matching methods

HMM Neural Network DMM
High-order dependency 7 3 3

Local heuristics 3 7 3

Global heuristics 7 7 3

Fast inference 7 3 3

for providing fast processing for large-scale cellular data
and minimizing computational resource consumption (e.g.,
power, storage, and computation). For example, a transporta-
tion analysis system that provides decision makers with road
information requires to map-match the cell tower sequences
from the urban population on a road map.

In recent years, two types of machine learning models are
widely used to solve map matching tasks, i.e., hidden Markov
model (HMM) [8]–[13] and Neural Network (NN) [14]–[17].
Unfortunately, as summarized in Table I, either HMM or NN
yields its own advantages and disadvantages for obtaining the
map matching model for cellular data.

On one side, the advantage of HMM models is that it can
incorporate the heuristics rooted on the observations from real-
life scenarios by designing customized emission and transition
probabilities. But in the meantime, the HMM-based methods
still have several weaknesses. First, they work based on as-
sumption of Markov property, i.e., the probability distribution
of next roads only depends on the current road and not on the
past or future road. However, human mobility on a road map
is non-Markovian [18], especially when people have a specific
destination. As a result, such an assumption leads to the loss
of contextual information, and thus reduces the map matching
accuracy. Second, under the assumption of Markov property,
they can only consider the heuristics observed from local
information of current location samples (e.g., preferring major
roads near the current sample [19], taking the shortest path
between the last and current samples [8]). Third, they often
assume to follow the shortest paths between the surrounding
roads of two samples, which leads to extensive searches of
the shortest paths during inference. This incurs high compu-
tational overheads, especially for the low-sampling-rate cell
tower sequences, since they will produce large possible road
candidates. For a sequence of only 7 cell towers with 68
possible road candidates around each cell tower, the HMM-
based methods take 32,368 (682 × 7) calculation times of the
shortest paths, corresponding to ∼ 82.5 seconds of inference.

On the other side, there are also some NN based map
matching methods, which directly learn the mappings between
location samples and road segments in a data-driven man-
ner, so as to consider high-order location dependency and

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

achieve fast map matching during inference. Unfortunately, the
above methods adopt one-hot encoding to represent the input
locations, which makes it difficult to generalize the learned
matching patterns to unknown locations, and cannot use the
heuristics observed from real-life scenarios to improve map
matching accuracy.

Towards this end, in this paper, we propose a deep rein-
forcement learning based map matching framework for cellular
data, named as DMM. Central to our framework is a recurrent
neural network (RNN) [20] model that takes a sequence of cell
tower locations as input and infers a trajectory composed of
road segments. By directly learning the mappings between cell
towers and roads based on training data, it can avoid extensive
computations of the shortest paths during inference and reduce
computational overheads. The RNN model is also expressive
of representing the sequence of cell towers by a hidden vector
during inference, which allows to consider multiple previous
roads for inferring the next road segment, but not just the last
road. In addition, in DMM, the RNN model is coupled with
a reinforcement learning (RL) scheme to explore the space of
possible better map matching results by considering the real-
life heuristics. To transform DMM into a practical system, we
tackle a set of challenges.

RNN based models require vector representations for input
cell towers. A classic approach is to use a binary vector
to represent a cell tower, in which all bits are ’0’ except
one ’1’, referring to the specific cell tower. However, this
approach cannot capture spatial proximity among cell towers.
As a consequence, the learned map matching patterns of a
cell tower cannot be utilized to its adjacent cell towers. To
enable accurate map matching, DMM designs a high-quality,
low-dimensional representation model. This enables to share
similar representations for spatially-close cell towers, and thus
generates similar map matching results.

Intuitively, we design our map matching model based on
classic RNN-based models, e.g., Long Short-Term Memory
(LSTM) [20] or Gated Recurrent Unit (GRU) [21], which are
supposed to transform a given cell tower sequence into a tra-
jectory composed of many connected road segments. However,
directly applying these models does not work. First, the RNN
outputs are conditionally independent, i.e., the RNN model
cannot guarantee that two adjacent output road segments are
connected. Second, since a cell tower may cover a large area
with hundreds of roads, the number of inferred road segments
for each cell tower is large and varies. To tackle the above
two challenges, we propose an encoder-decoder based model
for DMM, which maintains two RNN models to maximize the
probability of identifying a true trajectory. One RNN model
encodes a variable-length cell tower sequence into a context
vector with a fixed size. The other RNN model decodes the
vector into a variable-length sequence of road segments. We
also plug an alignment component into the basic model to
cope with long cell tower sequences.

To enable more accurate map matching for cellular data,
DMM incorporates a number of heuristics to refine the in-
ference model. Besides the heuristics considered in previous
work [8] (i.e., staying on the same road), we also propose two
novel global heuristics, i.e., preferring to choose a road trajec-
tory with small speed difference between moving speed and
road speed limits, and less frequency of turns. To incorporate

these heuristics into the map matching model, we customize
the basic map matching model into a RL scheme with well-
defined reward function, which encourages the map-matched
outputs to meet the designed heuristics.

We implement DMM in PyTorch. In order to train DMM,
we use an anonymous city-level cellular dataset provided by
mobile carriers in a large city. We evaluate DMM with real-
world cell tower sequences generated by volunteers traveling
more than 1,700 kilometers. The experimental results demon-
strate that DMM can not only achieve high accuracy, but
also have fast map matching speed. In particular, it provides
precision and recall of 82.4% and 86.3%, respectively, corre-
sponding to performance gains of 22.3% and 16.3% over the
state-of-the-art approach [8]. In addition, DMM achieves fast
inference time about 0.98 second.

In summary, this paper makes the following contributions.
• We develop DMM, a deep reinforcement learning based

map matching scheme for cellular data, which takes a
sequence of cell tower locations as input and infers a
trajectory composed of road segments.

• We customize DMM to tackle a set of challenges, in-
cluding an encoder-decoder model for input and output
sequences of variable length, a spatial-aware representa-
tion model for cell towers, and a reinforcement learning
scheme for refining output results to meet two novel
heuristics observed from real-world driving scenarios.

• Extensive experimental results demonstrate the effective-
ness and efficiency of DMM based on a large-scale
cellular dataset. We also examine the system robustness
in terms of sensitivity to different location characteristics
and attributes of input cell tower sequences.

The rest of the paper is organized as follows. In Section II,
we introduce the background and motivation of our study.
Section III presents the overview of DMM, and the three key
modules for accurate and fast map matching. In Section IV, we
describe the implementation details of DMM. Experimental
setup and results are given in Section V and Section VI.
Section VII reviews map matching techniques. In Section VIII,
we discuss some key issues in our study and conclude our
study in Section IX.

II. MOTIVATION

In this section, we investigate the necessity of a map match-
ing scheme for cellular data and the limitations of existing
methods.

A. Why cellular data
One of the key motivations for DMM is that it uses high-

penetrated, low-cost cellular data than GPS. Due to low
location error and high sampling rate of GPS sensors, many
map matching studies have been proposed for the GPS-based
data [9]–[11], [22], [23]. However, there are still some limita-
tions. First, the GPS sensor can only cover a small population
or space in a city. Because of large power consumption or
privacy concerns, GPS sensors are not installed on all vehicles
or enabled by all mobile subscribers. This limits many appli-
cations that rely on group behavior analysis of a large amount
of users, such as urban planning optimization [2], [24] and
human mobility analysis [5], [6], etc. Second, in places with

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

0

1

2

3

4

5

In
fe

re
n
ce

 t
im

e
(m

in
)

First-order HMM Second-order HMM
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision

Recall

Time

(a) Orders of the HMM-based model

50 100 300 500 800
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

 o
r

R
e
c
a
ll

 (
%

)

0

48

96

144

192

240

In
fe

re
n

c
e
 t

im
e
 (

s)

Precision

Recall

Time

(b) Search radius RC (m)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

 o
r

R
e
c
a
ll

 (
%

)

0

24

48

72

96

120

In
fe

re
n

c
e
 t

im
e
 (

s)

Precision

Recall

Time

(c) Sampling rate (/min)

Fig. 1: Performance of the HMM-based model under different settings

poor antenna signals (e.g., indoors, tunnels, basement, etc.),
the GPS sensor has bad localization accuracy. For this end,
in this work, we investigate a novel map matching framework
for the high-penetrated and low-cost cellular data.

B. Problem definition of map matching
We first define some key concepts in map matching.
Definition 1 - Cell tower sample. Every time, a mobile

phone communicates with a cell tower, including network
service requests (call, SMS and application usage) and the
location updates (cell handover and periodic location update),
a cell tower sample x is passively recorded by the cellular
network infrastructure. Table II describes two examples of the
cell tower samples, including several fields, i.e., anonymous
user identifier (UserID), timestamp (Time), location area code
(LAC), and cell ID (CID). In these fields, The field of UserID
is uniquely associated with a mobile phone. The field of Time
indicates the timestamp of current cell tower sample. The fields
of LAC and CID represent a unique cell tower, where the LAC
is used to denote a location area associated by a mobile phone
and the CID is used to identify a base transceiver station (BTS)
or a sector of BTS within the location area.

Definition 2 - Cell tower sequence. A cell tower sequence
is the input of map matching model, composing of a se-
quence of cell towers accessed by a mobile phone, i.e.,
X = x1, x2, ..., x|X|, where |X| is the number of cell towers.
In our dataset, we have 887,116 pieces of cell tower sequences
from two mobile carriers of a large city.

Definition 3 - Road network. A road network can be
described as a directed graph G(V,E), where V is a set
of nodes on the road network, representing intersections or
terminal points, and E is a set of road segments connecting
these nodes. In our study, the road network is obtained from
a public open-source website (OpenStreetMap 1). All road
information used in DMM can be provided in the downloaded
OpenStreetMap road network (e.g., length and speed limits
of road segments). In particular, it contains 15,768 nodes and
31,761 edges.

Definition 4 - Candidate road segment. The candidate road
segments of a cell tower is a set of roads within a radius RC
near a cell tower. The setting of RC is related to location error
of different location sensors. For the sensor with low location
error (e.g. GPS sensor), we select a smaller value (e.g., 100).
In cellular environment, due to the different densities of cell

1www.openstreetmap.org/

TABLE II: Examples of the cell tower samples

UserID Time LAC CID
1B2A7 201*03*080234 37*6 19*18
5U2F1 201*03*070821 37*9 19*57

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Location error (km)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Sampling rate (/min)

Fig. 2: Properties of cellular data

towers in different areas, the choice of RC varies, e.g., a small
value 200 in urban areas and a large value 500 in rural areas.

Definition 5 - Route. A route Y is the output of map
matching model, connecting a sequence of road segments on
the road network G, i.e., Y = y1, y2, ..., y|Y |, where yi is
a road segment in the route Y , |Y | is the number of road
segments, and the end point of yi is the start point of yi+1.

Definition 6 - Map matching. Given a cell tower sequence
X and a road network G(V,E), a map matching model finds
the most likely route Y on G.

C. Limitations of existing map matching methods
Most recent map matching approaches are based on Hidden

Markov Models (HMMs) [8]–[13]. They define a hidden state
(road segment) and an observable state (cell tower) for the map
matching process. Each road segment maintains two proba-
bilities, i.e., emission probability and transition probability.
The emission probability evaluates the probability of a cell
tower localized at this road segment. The transition probability
evaluates the probability that transits from the previous road
segment (first-order HMM) or the previous two road segments
(second-order HMM) to the current road segment. The existing
HMM-based map matching methods define different emission
probabilities and transition probabilities. For example, for
the emission probability, ST-Matching [10] assumes that the
closer roads have the larger emission probability. SnapNet [8]
assumes that the major roads have the larger emission prob-
ability. For the transition probability, the studies [9], [10],

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

[25] often assume to follow the shortest path between the
surrounding roads of two consecutive cell towers. For an
inference, HMM first searches for candidate road segments
within a search radius RC of each cell tower. As the HMM
process proceeds, the products of emission probabilities and
transition probabilities of the road segments of some routes
increase faster than others. In the end, an optimal route with
the highest product value can be identified using dynamic
programming technique [26].

However, in the above process of using HMM to solve map
matching, we find three factors influence the effectiveness and
efficiency of the HMM-based models, i.e., order of HMM
model, search radius for candidate road segments of cell
towers and sampling rate of cell tower sequences. We leverage
a state-of-the-art HMM-based approach (SnapNet w/o I in
Section V-C) and conduct a series of empirical studies to
illustrate why the HMM-based methods are not effective
and efficient for processing cell tower sequences. For each
experiment, we measure precision, recall and inference time
on the same hardware. Specific descriptions of the selected
method and experiment settings are introduced in Section V.

Impact of order of HMM model. Considering that HMMs
assume the Markov property of problems, the emission prob-
ability and transition probability of existing methods can only
focus on the local information provided by the road network
(e.g., preferring the closer roads [10] or the wider roads [8]),
ignoring the contextual information brought by historical or
future cell tower samples. However, in real driving scenarios,
people often have a specific destination, which leads to human
mobility obey Markov property. For example, a person may
choose a traveling route according to the number of turns,
which requires the map matching process to consider the
context information provided by multiple cell tower samples.

To alleviates this issue, a high-order HMM model that
considers last several cell towers in the HMM process may
work. We explore the accuracy and inference time of map
matching models with different orders (e.g., first-order HMM
and second-order HMM), as depicted in Figure 1 (a). We find
that although accuracy of the second-order HMM is higher
than that of the first-order HMM, inference time significantly
increases.

Impact of search radius for candidate road segments. The
setting of search radius RC determines to different number of
candidate road segments in the HMM process. Less number
of road segments indicates fast inference, but it may lead to
local optimal results. We investigate the performance of an
HMM-based algorithm with respect to different settings of RC
in Figure 1 (b). When RC is small, the accuracy decreases
sharply despite fast inference time. As RC increases, more
possible road segments will be considered into the HMM
process. This significantly increases the calculation times of
the shortest path searches between two cell tower samples,
leading to a larger search space and much more inference time,
as Figure 1 (b) shown.

We study the location error of cellular data. We depict the
Cumulative Distribution Function (CDF) of the location error
of collected data (Section V), Location error is measured as
the distance between the user’s GPS position and the cell
tower position. As shown in Figure 2 (a), about one third
of the location errors of cell towers are larger than 0.4 km,

corresponding to a large search radius RC , which implies long
inference time.

Impact of sampling rate of cell tower sequences. The
sampling rate of cell tower sequences determines the distance
between two consecutive cell tower samples, influencing the
running time of calculating the shortest paths in the HMM
process. We depict the inference time of HMM-based map
matching model with respect to different sampling rates in
Figure 1 (c). As the sampling rate increases, the inference
time decreases sharply. Unfortunately, since the cell tower
can only receive signals when requesting location updates
or network services, nearly all cell tower sequences have an
average sampling rate less than 1 sample per minute, as shown
in Figure 2 (b), which depicts the sampling rates of our cell
tower sequences. This leads to an infeasible inference time for
map matching.

To provide fast map matching, two studies (SnapNet [8]
and FMM [25]) make attempts to speed up the HMM pro-
cess of map matching. In particular, SnapNet [8] increases
the sampling rate of cell tower sequences by interpolating
some samples between two adjacent cell towers. In this way,
SnapNet works well for moving trajectories on highways;
whereas it is hard to perform accurate interpolation in urban
areas where have a lot of possible routes to connect two cell
tower locations. As a result, simple interpolation degrades the
map matching accuracy in urban areas. FMM [25] focuses
on reducing inference time of the HMM-based methods by
pre-computing an origin-destination table to store all pairs of
the shortest paths between nodes within a certain range in
the road network. Although FMM reduces inference time of
the HMM-based models, it is still difficult to make accurate
map matching in the cellular environment and encounter
performance degradation on inference time for cellular data
with large location error, where the number of candidate road
segments of each cell tower sample increases greatly, resulting
in large increase in calculation times of the shortest paths
during the HMM process. We also compare the accuracy and
inference time with those two methods in Section VI-A.

Summary. From the above empirical experiments, we con-
clude that it is difficult for the HMM-based map matching
approaches to achieve the best performance on both accuracy
and inference time in the cellular environment. Therefore,
it is necessary to investigate an effective and efficient map
matching model for cellular data.

III. DESIGN OF DMM

In this section, we introduce an overview of DMM and
the design of key modules in DMM, i.e., data pre-processor,
location representer, map matcher, and RL optimizer.

A. DMM Overview

Figure 3 depicts the architecture of DMM, consisting of
two stages, i.e., offline training and online inference. Before
the offline training and online inference, we first pre-process
the cell tower sequences in the cellular dataset to remove noisy
data (Section III-E).

Offline Training. Given the cell tower sequences in the
cellular dataset, we first learn a location representer to capture
high-quality representations for cell towers (Section III-B).

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Fig. 3: The architecture of DMM

Based on the location representer, we transform the cell
tower sequences into vector sequences and store them in a
vector database, which will be used for training map matching
model. Then, we learn an RNN-based map matching model
to generate the most-likely route on the road network given
a vector sequence (Section III-C). The vector sequences as
well as the estimated ground truth labels generated from an
HMM-based method [8] are used to train the RNN model.
Moreover, we customize the map matching model into a
reinforcement learning framework to refine the map matching
results (Section III-D). By the reward mechanism of reinforce-
ment learning that automates to explore the space of possible
results, the initial map matching model is further optimized by
incorporating heuristics. Note that the training of models can
be conducted offline, without impacting the speed of online
inference.

Online inference. In this stage, cell tower sequences are
continuously fed into DMM for route inference. For a cell
tower sequence, DMM transforms it to a vector sequence by
the location representer and passes the vector sequence into
the trained map matching model to identify its most-likely
route on the road network.

B. Location representer
Intuitively, DMM can represent a cell tower using two

approaches, i.e., one-hot representation and GPS coordinates
of the cell tower. For the one-hot representation, we rep-
resent a cell tower as a high dimensional binary vector, in
which all bits are ’0’ except one ’1’ referring to the specific
cell tower. However, the one-hot representation suffers from
two drawbacks. First, the redundant representation reduces
training efficiency of map matching model, especially in the
environment with a large number of cell towers. Second, the
learned map matching patterns cannot be effectively utilized
for unobserved cell towers. For the GPS-based representation,
compared with one-hot representation, this method encodes
spatial similarity between cell towers inherently. However, it
limits the representations in two-dimensional space, which is
difficult to be further optimized in parameter space during the
training process. Towards this end, we propose to leverage
auto-encoder model [27] to automatically learn high-level cell
tower representations.

The auto-encoder model leverages a multi-layer neural
network to learn identity mapping for same input and output.
The middle layer learns high-level representations for cell

Fig. 4: The architecture of location representer

towers, where the number of hidden neurons is less than
that of the input and output layers. However, the basic auto-
encoder model is hard to capture spatial-aware feature among
cell towers. For this end, we instead use spatially-close cell
tower pairs as expected output of the auto-encoder model. In
this way, the spatial characteristic of close cell towers can be
incorporated into the representations.

Given a cell tower x, we learn a model to maximize the
probability that predicts the cell tower x′ in the spatially-close
cell tower set Cx as Eq. 1. Cx is constructed by the preceding
and following cell towers in a search radius of the current cell
tower.

maximize
∑
x′∈Cx

logP (x′|x) (1)

Figure 4 depicts the architecture of location representer,
consisting of an input layer, a representation layer, and an
output layer. The input and output are close cell towers in
space and the representation layer plays the role of extracting
high-level features of input cell towers. The input layer simply
takes a B-dimension binary cell tower vector as input, where
B is the size of cell tower set. We use a fully-connected neural
network to transform the input cell tower into a D-dimension
vector in the representation layer, which can be expressed
as a matrix transformation WBD. In the output layer, we
use a fully-connected neural network as well as a softmax
network to classify the D-dimension vector as a spatially-close
cell tower x′ in Cx. Specifically, the fully-connected neural
network (denoted as WDB) learns a classification function in
the low dimensional vector space and outputs the classification
value. The softmax network then normalizes the output values
to [0, 1], indicating the probability distribution of cell towers.

To train the location representer, we feed the spatially-close
cell tower pairs into the model continuously and calculate the

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

difference between the output probability and the expected
output probability as optimization criterion. After many itera-
tions, the location information of cell towers as well as spatial
proximity among cell towers are learned and represented in
the weight matrix of the representation layer.

C. Map matcher

Inspired by recent advancements on recurrent neural net-
works (RNNs) for sequential-based applications [21], we de-
sign an RNN-based map matcher to learn the mapping between
cell tower sequences and road segments on the road network.
However, simply applying RNN will not be able to accomplish
our goal. First, it is difficult for the basic RNN models to
handle the input and output with variable length. Second, it is
difficult for the RNN models to conserve historical information
of long cell tower sequences, especially those that are longer
than the cell tower sequences in the training dataset. Towards
this end, we propose a novel architecture for the map matcher
in Figure 5, consisting of an RNN encoder-decoder model
(blue blocks) and a plug-in alignment component (red block).

1) Encoder-decoder based map matching model: The input
of map matching model is a represented cell tower sequence
X . An encoder network first transforms the input cell tower
sequence X into a sequence of hidden states h1,h2, . . . ,h|X|.
After encoding the input, the context vector c (the last hidden
state h|X|) is passed to a decoder network. Then, the decoder
identifies the optimal road segments successively based on the
context vector c, and finally generates the route Y .

Encoder. The encoder is implemented as one RNN, which
encodes the cell tower sequence X successively and embeds
it into a context vector c. During the encoding process, the
hidden state ht is updated as Eq. 2.

ht = GRU (ht−1, xt) (2)

where GRU (Gated Recurrent Unit [21]) is a non-linear
function. After encoding the whole cell tower sequence, a
continuous vector c (i.e., the hidden state h|X|) is generated
and served as the input of decoder, which conserves the
historical location information of the sequence.

Decoder. The decoder is the other RNN, which generates the
map-matched route Y successively given the context vector c.
At the beginning, we feed the decoder a Start Of Sequence
token (SOS) to start a map matching process. At step t, given
the last predicted road yt−1 and the hidden state ht at step t,
the probability can be estimated as Eq. 3.

P (yt|y1, · · · , yt−1) = GRU (yt−1,ht) (3)

where GRU is the other non-linear function to generate the
probability yt. Until the decoder generates an End Of Se-
quence (EOS) token, we accomplish a map matching process
and finally obtain a map-matched route Y .

2) Alignment model: In the above encoder-decoder model,
the encoder compresses input cell tower sequence into a
fixed context vector, which is difficult to memorize the whole
information of long sequences. As a result, the basic map
matching model faces a performance degradation on accuracy
in the case of long sequences. Towards this end, we plug an
alignment component into the encoder-decoder model, which
learns to match and align the input cell tower sequence and

Fig. 5: The architecture of map matcher

the map-matched route jointly. Specifically, the alignment
component considers all the hidden states h1,h2, . . . ,h|X| of
the encoding stage instead of the last context vector c, as the
basic encoder-decoder model does. This avoids to conserve the
whole information of cell tower sequence, and thus allows to
handle the long cell tower sequences. Next, we present how
the alignment component works.

As shown in the red block of Figure 5, at step i − 1 of
the decoding process, the decoder generates a road segment
yi−1 and updates the hidden state h′i. Then, the alignment
component searches for the most relevant context vectors from
the hidden states h1,h2, . . . ,h|X| from the encoding process.
An adaptive context vector ci is designed to weight the hidden
states h1,h2, . . . ,h|X| to concentrate the relevant parts of cell
tower sequence as Eq. 4.

ci =

|X|∑
j=0

(αijhj) (4)

where j represents the jth element in the input cell tower
sequence, |X| represents the length of the sequence, and hj
represents jth hidden state of the encoder. αij measures the
importance of hj , which can be calculated by Eq. 5.

αij =
exp(eij)∑|X|
k=1 exp(eik)

(5)

where eij is a score function, which measures the matching
degree between the hidden state hj of the encoder network
and the hidden state h

′

i−1 of the decoder network.
3) Training for the map matcher model: The RNN-based

map matcher needs to be trained using a large amount of cell
tower sequences with labeled true route, which is difficult to
obtain in practice. We take the second best to generate the
labels of cell tower sequences using a state-of-the-art HMM-
based method [8]. Although this will bring deficiencies to the
map matcher model, it is only used for the initialization for
RL optimizer.

Specifically, given a cell tower sequence, the encoder-
decoder model and the alignment model are jointly trained
to maximize the log-likelihood of route:

max
θ

1

N

N∑
i=1

logPθ (Yi|Xi) (6)

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

Fig. 6: The architecture of RL optimizer

TABLE III: Key elements of our RL framework

Elements Meanings
Agent The map matcher model
State A sequence of vectors of cell towers
Action Map-matched road segment at each step
Policy Neural encoder-decoder network
Reward The satisfactions of heuristics of map-matched route

where θ is the parameters in networks, N is the number of
training pairs sampled from the training data, and (Xi, Yi) is a
training pair of input cell tower sequence and output route. To
speed the convergence in the training process, we use expected
output ŷt−1 obtained from the labels as the input of step t,
instead of the predicted output yt−1 of last step t− 1.

D. RL optimizer
To further improve map matching performance, we exploit

global heuristics observed from real driving scenarios, such as
preferring the routes with more proportion of major roads, less
frequency of turns and U-turns. To incorporate these heuristics,
inspired by the recent advance of reinforcement learning
(RL) approaches [24], [28]–[30], we customize the basic map
matching model into a reinforcement learning framework.

1) RL formulation: To apply RL in DMM, we view the
map matcher model as the agent and customize it into a
RL framework with specific designs of the key elements in
Table III. Figure 6 depicts the architecture of RL optimizer.
At every iteration, the map matcher agent reads the cell tower
sequence X = x1, ..., x|X| as state input and generates an
action sequence Y = y1, y2, ..., y|Y |, which is also the map-
matched result of our model. A reward r, which measures the
satisfactions of global heuristics of route Y , is then computed
to assess the quality of output route. Finally, the REINFORCE
algorithm [31] is used to update the policy of map matcher
agent based on the reward. Next, we introduce the details of
reward function and REINFORCE algorithm.

2) Reward design: We incorporate a number of global
heuristics into DMM. First, people are more likely to se-
lect a sequence of roads with speed limits close to moving
speed. Second, people prefer the routes with turns as few
as possible if exists multiple possible routes between origin
and destination. Third, people normally prefer to follow the
same direction, rather than completely changing the moving
direction. Based on the above observations, we present the
corresponding design of the reward r(Y) to evaluate the output
route, as shown in Eq. 7.

r(Y) = λP · rP + λT · rT + λU · rU (7)

where λP , λT , λU ∈ [0, 1]. r(Y) is a shorthand for r(X,Y)
where X is the input cell tower sequence, Y is the map-
matched route. rP , rT , rU represent for the goal of output
route, namely, weighted spatial proximity to input cell tower
sequence, less frequency of turns, less U-turns. In the follow-
ing, we present design details for the reward.

Weighted spatial proximity. The reward of spatial proximity
rP needs to ensure that the generated route is spatially-closest
to input cell tower sequence, which is in line with the intuition
of map matching task. However, due to large location error
of the cellular data, a cell tower may cover an area with
many roads, leading to the basic intuition incorrect. Inspired
by the first observation, we propose to use average weighted
projection distance between the input cell tower sequence and
the map-matched route as the design of rP .

Specifically, we calculate the average weighted projection
distance between the input cell tower sequence and the map-
matched route as follows. First, for each cell tower sample, we
calculate basic projection distance to neighboring roads of the
cell tower sample by the geodesic distance between the GPS
coordinates of cell tower and its projected GPS coordinates
on each road. Then, we assign the basic projection distance to
each road with a weight ws. Following the first observation,
the road with small speed difference between the moving speed
of a user and the speed limit of current road is assigned with a
smaller weight to make the projection distance to these roads
smaller, and vice versa. In our implementation, the road weight
is calculated as ws = |vl − vc|/vl, where vl is the speed limit
of road obtained from the digital map, vc is the local moving
speed of user estimated by the mean value of the speed from
the previous sample to the current sample and the speed from
the current sample to the next sample.

Less frequency of turns. To avoid the unnecessary turns
in the output route, we design a reward rT , which rewards
the route with similar number of turns between the cell
tower sequence and the output route. Based on the second
observation, we define the reward rT as Eq. 8.

rT =

{
1− |TX−TY |

TX
if TX ≥ TY and TX 6= 0

1− |TX−TY |
TY

if TX ≤ TY and TY 6= 0
(8)

where TX and TY are the estimated numbers of the turns in the
input and output sequences. We measure the number of turns
based on the sum of angles of every adjacent cell towers.

Less U-turns. We design a reward rU to avoid the occur-
rence of U-turns in the output route. Different from the design
of rT , we estimate the difference of the number of U-turns
between the cell tower sequence UX and the output route UY
as the reward rU . We measure the number of U-turns by the
number of the completely change of the moving direction in
the sequence. Specifically, we replace the TX and TY in the
reward rT with UX and UY in Eq. 8 to calculate rU .

3) REINFORCE algorithm: In terms of the characteristics
of encoder-decoder based policy in the agent of map matcher,
we adopt the REINFORCE algorithm [31] to refine the policy.
It optimizes the policy in an episodic way, i.e., optimizing
the policies using the final reward obtained at the end of an
episode, such as playing chess (win/lose in the end). In DMM,
the reward of map-matched route cannot be computed until the
end of map matching process.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

Algorithm 1 Training process of the RL optimizer

1: Initialize the parameters θ of policy πθ using the pre-
trained map matcher;

2: for iteration = 1, · · · , I do
3: Sample M routes from the distribution πθ(·|X);
4: Estimate an expected reward J(θ) as Eq. 9;
5: Calculate the gradient ∇J(θ) as Eq. 10;
6: Update the parameters θ of policy πθ as Eq. 11.

The training process of RL optimizer is outlined in Algo. 1.
We first initialize the parameters of policy πθ with a pre-
trained map matcher agent. Given a cell tower sequence X ,
we generate a route Y based on the policy πθ, consisting
of an action sequence (a sequence of road segments). Then,
according to the reward r(Y), the expected reward can be
obtained as Eq. 9.

J(θ) = EY∼πθ(·|X) [r (Y)] (9)

There may be infinite map-matched routes for a cell tower
sequence X . As a result, the expectation of reward EY∼πθ(·|X)

from the distribution πθ(·|X) cannot be estimated directly. We
approximate this expectation by sampling M routes from the
distribution πθ(·|X) [28]. To reduce the variance that leads
to inaccurate estimation of expected reward, we subtract the
reward r(Y) from a baseline b [32]. b is defined as an average
reward of the sampled M routes. Then, the gradient can be
approximated as Eq. 10.

∇J(θ) =
1

M

M∑
m=1

|Y |∑
i=1

∇ log π (yi|y1:i−1, X) [r (Y)− b]

(10)
Finally, we update the parameters of map matcher agent

using gradient descent as Eq. 11. η is the learning rate.

θ ← θ + η∇J(θ) (11)

E. Data pre-processor
Before offline training and online inference, we develop

three noise filters to process noisy data.
Ping-Pong filter. A mobile user may be sometimes in the

middle of several adjacent cell towers, and their phones per-
form handover between cell towers frequently in a short period
of time. When the filter processes one cell tower sample, it
first checks whether the following several samples have Ping-
Pong phenomenon, i.e., some samples are from the cell towers
that different from current sample and some samples are from
the same cell tower as current sample. If these samples do
have Ping-Pong phenomenon, the samples from other cell
towers are discarded. In addition, we sometimes cannot handle
all Ping-Pong noises in one time, we apply the Ping-Pong
filter to process the same cell tower sequence iteratively until
the number of samples in the cell tower sequence does not
decrease.

Backward filter. When a person moves along with a direc-
tion, the mobile phone may switch to another cell tower that
is opposite to the moving direction. This may be caused by
the fluctuation of wireless signals or an imperfect handover
algorithm. As a result, the sampled cell tower sequence often

Fig. 7: The workflow of DMM

changes direction at some samples and returns to the normal
direction shortly. To remove such type of noise, we develop
a backward filter. When the moving direction of one sample
is different from the current direction, the filter caches that
sample and checks the moving directions of its next several
samples. If the direction is changed, confirmed by the follow-
ing samples, the filter adds all samples to the pre-processing
result; otherwise, the filter deletes the cached samples.

Drifting filter. A mobile phone may switch to another cell
tower that is far from the position of current cell towers
suddenly. As a result, the cell tower fingerprint sometimes
moves quickly with an impractical moving speed. To handle
this issue, we estimate the moving speed between the current
cell tower sample and the next sample, based on the distance
of their cell towers and their time intervals. When the moving
speed is larger than the road speed limit, the next sample will
be discarded.

IV. IMPLEMENTATION

In this section, we introduce implementation details on three
models and online inference process of DMM in Figure 7. We
implement DMM on a server with 2 CPUs. Both CPUs have
dual Intel(R) Xeon(R) CPU E5-2609 v4 @ 1.70 GHz with 8
cores. A graphics processing unit card (NVIDIA Titan X) is
used to accelerate the training process. We develop DMM in
Python. The code is implemented in PyTorch, an open-source
machine learning framework.

A. Offline stage

With the cellular dataset provided by mobile carriers, we
conduct offline training of DMM. Three models in DMM are
trained. Considering that our cellular dataset contains the cell
tower sequences sampled from users under static and mobile
scenarios with different transportation modes (e.g., cycling,
car, etc.), we only retain the cell tower sequences in mobile
scenarios for model training. Specifically, after preprocessing
the cell tower sequences of each user, we identify staying
points of each user using the method in [33] and leverage
the cell tower sequences between the staying points for model
training. We first train the location representer to obtain the
high-quality cell tower representations (Section III-B), and
then perform the map matcher model training (Section III-C).
Finally, we train the reinforcement learning model to refine
map matching results (Section III-D).

Training for the location representer. To train the location
representer, we first construct a spatially-close cell tower pair

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

set from our cell tower sequences. For any one cell tower in
the cell tower sequence, we obtain the cell towers within a
certain window before and after the cell tower. The window
size is set to 2. We pair each cell tower in the window and
the current cell tower together to form a cell tower pair. After
traversing all the cell tower sequences, we obtain a spatially-
close cell tower pair set.

We implement the location representer as a two-layer neural
network. The size of input and output layer is set to the number
of cell towers in cell tower set B. The size of hidden unit is
64. Cross entropy loss is used to calculate the loss between
true output and expected output. Once trained, we store the
learned representations of cell towers into a hash table. This
allows to speed up the representations of cell towers in the
following map matching process.

Training for the map matcher. We train the map matcher
model using the represented cell tower sequences as well as the
estimated ground truth labels generated from an HMM-based
method [8]. The parameters of map matcher are uniformly
initialized to [−0.1, 0.1]. We use Adam optimizer to update
the parameters. Batch size is set as 128. We use Gated
Recurrent Unit (GRU) [21] as the RNN units of encoder and
decoder networks due to its higher computational efficiency
than LSTM [20]. The dimension of hidden state is set as 128.
The learning rate is set as 0.001. The GRUs are regularized
with a dropout rate of 0.1. We implement the alignment
component as a feed-forward neural network, which is jointly
trained with the encoder-decoder networks.

During the training of map matcher, mini-batch is a clas-
sic technique to accelerate the training speed and model
convergence. Cell tower sequences are randomly selected to
update the parameters at every iteration. We adopt the padding
technique [34] to fill short cell tower sequences with the same
length of the longest sequence in a batch. This ensures that the
cell tower sequences in a batch are of the same length. We also
divide the training cell tower sequences into different buckets
according to the number of cell tower samples [34]. During
training, the mini-batches are sampled from the same bucket.
This can avoid the training inefficiency caused by padding too
many meaningless PADs in the short cell tower sequences.

Training for the RL optimizer. Since the training of RL
optimizer does not need true label to calculate the loss, we use
the cell tower sequences as the training data to train the RL
optimizer. We use stochastic gradient descent with the learning
rate of 0.01. We set λP = 0.5, λT = 0.25, λU = 0.25.

B. Online stage

Once the above models are trained, we export the metadata
of DMM for online deployment. The metadata includes the
network architecture and the refined DNN parameters, which
are used to deploy DMM for online inference. After deploying,
DMM takes the cell tower sequences as input, transforms them
into vector sequences, and identifies the most-likely routes on
the road network.

V. EXPERIMENTAL SETUP

In this section, we describe the experimental settings in
detail for evaluating DMM, including experimental dataset,
performance criteria, and benchmarks.

Fig. 8: Coverage map of our collected dataset

A. Experimental dataset
We first describe the evaluation dataset for our map match-

ing framework.
Data collection. We recruited volunteers and collected their

data for evaluation. All the volunteers gave their consents to
participate in the experiments and use their data for study.
During the data collection, we asked the volunteers to equip
with mobile phones and drive in our city. The volunteers were
required to enable GPS on their mobile phones. We also install
a data collection application (GPS Toolbox2) to record GPS
locations at a high sampling rate up to 1 sample per second.
The mobile carrier also provides the corresponding anonymous
cell tower sequences of the volunteers. We map-match all the
GPS-based location sequences to obtain the true routes as the
ground truth [10]. In the end, we collect 198 car driving traces,
with 1,701 kilometers of total length. Figure 8 depicts the
distribution of our collected traces. As shown, our data have
a dense coverage in the urban area (within 9 kilometers of
the city center in our study), especially in the central area of
the city, since our volunteers need to go there every day. The
collected data are available on the website3.

Attributes of the collected data. We describe statistical
analysis of our collected dataset according to the following
attributes, i.e., moving speed, sampling rate, length, time
duration. Figure 9 plots the cumulative distribution functions
(CDFs) of these attributes.

As shown in Figure 9 (a) of the distribution of moving
speed, we can see that the average moving speeds of 76.8%
of the sequences are below 18 km/h, because a large portion of
the sequences are collected in urban areas with various traffic
conditions. We still have some sequences (23.2%) that have
an average speed larger than 18 km/h.

From Figure 9 (b), we can see that 99% sampling rates of
the sequences are less than 1 sample per minute. For 5% of
the sequences, their sampling rates are less than 0.2/min. By
comparing the distributions in Figure 2 (b) and Figure 9 (b),
we find that the minimum sampling rate of our collected
dataset is relatively higher than that of all subscribers in
the city. This is because our collected dataset has a large
proportion of the sequences (i.e., 84%) that are collected in
urban areas, which usually has the higher density of cell towers
and in turn the higher sampling rates of cell tower sequences.

From the distribution of lengths of our cell tower sequences
in our dataset (Figure 9 (c)), we can see that the length varies

2https://play.google.com/store/apps/details?id=net.gotele.gpsbox&hl=zh
3https://github.com/zhshen0831/dmm.git

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

(a) Moving speed (b) Sampling rate (c) Length (d) Time duration

Fig. 9: Statistics of the collected cell tower sequences

0 50 100 150 200 250 300

Number of road segments

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Road network complexity of cell
tower samples

0 50 100 150

Number of road segments

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Road network complexity of cell
tower sequences

Fig. 10: Location characteristics of the collected cell tower
sequences

from 2.5 km to 23.6 km. For 22.7% of the sequences, their
lengths are shorter than 5 km. For 87.4% of the sequences,
their lengths are shorter than 15 km.

From the distribution of time duration (Figure 9 (d)), we
can see that the time duration of the sequences vary from 7.3
minutes to 78.75 minutes. For 77.7% of the sequences, their
time durations are shorter than 40 minutes.

Location characteristics of the collected data. We also
explore location characteristics of our collected cell tower
sequences by analyzing road network complexity around each
cell tower sample and cell tower sequence. We first analyze the
road network complexity of our collected cell tower samples,
which is defined as the number of road segments within radius
of 500 meters of each cell tower sample. As shown in the
Figure 10 (a), we find that the number of road segments varies
from 1 to 265. In addition, about 53.3% of the cell tower
samples are surrounded by more than 50 road segments.

We also report the road network complexity of our collected
cell tower sequences. Figure 10 (a) shows the CDF of average
number of road segments around all cell tower sequences.
As shown, the road network complexities of our cell tower
sequences are different, with the average number of road
segments of each sequence varies from 6.6 to 125.8.

B. Performance criteria

We assess the accuracy of map matching approaches by
comparing the map-matched route to the ground truth route.
Given the testing cell tower sequences, we use average pre-
cision and recall as accuracy criteria. For each cell tower

sequence, we calculate the precision and recall as follows.

Precision =
Length of the correctly-matched road segments

Length of the map-matched route

Recall =
Length of the correctly-matched road segments

Length of the ground truth route

Meanwhile, average inference time is used to evaluate
the efficiency, which is defined as the average running time
required to transform cell tower sequences into routes.

C. Benchmarks

We compare DMM with the following baselines. All base-
lines are implemented in Java. By default, we set the search
radius RC = 500 in our experiments.
• ST-Matching. ST-Matching [10] is a widely used HMM-

based approach for matching low-sampling-rate GPS-
based cell tower sequences, which takes the spatial
topological structure of road network and the temporal
constraints of moving speed into account simultaneously.

• SnapNet. SnapNet [8] designs an HMM-based map
matching approach for cellular data collected from mobile
phone side. It incorporates several digital map hints and
heuristics to handle the issues of larger location error
and low sampling rate, e.g., preferring major roads and
staying on the same road.

• SnapNet w/o I. SnapNet [8] adopts a linear interpolation
technique to improve the sampling rates of cell tower
sequences, but it severely harms the accuracy of map
matching, as we have discussed in Section II-C. Towards
this end, we implement a variant of SnapNet, denoted as
SnapNet w/o I, to compare with other methods. In par-
ticular, SnapNet w/o I gets rid of the linear interpolation
from the pre-processing steps of SnapNet.

• FMM. FMM [25] FMM pre-computes all pairs of shortest
paths between nodes under a specific range in the road
network, and replaces the shortest path query in HMM
with hash table search, so as to reduce the inference time
of map matching.

VI. EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments to answer
the following research questions.
• RQ1: What is overall online and offline map matching

performance of DMM?

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ti

m
e

(m
in

)

ST-Matching SnapNet SnapNet w/o I FMM DMM
0

0.2

0.4

0.6

0.8

1
P

re
ci

si
on

 o
r

R
ec

al
l

(%
)

Precision

Recall

Time

Fig. 11: Online map matching results of different approaches

• RQ2: How do the three proposed modules in DMM
contribute to map matching performance?

• RQ3: Is DMM robust against different sampling rates and
location characteristics of input cell tower sequences?

A. Overall performance of DMM

In response to RQ1, this section evaluates the overall
performance of DMM from the perspective of online inference
and offline training respectively.

1) Online map matching performance of DMM: We first
evaluate online map matching performance of DMM by com-
paring to four baselines on our collected dataset.

Accuracy. We use the map matcher in DMM to transform
the cell tower sequences of our volunteers into the routes
on the road network and compare the generated results with
the ground truth. All the 1701-km data are used in the
testing stage. Figure 11 depicts the overall map matching
accuracy of different approaches. As depicted in Figure 11,
we find that DMM provides the best accuracy. For example,
DMM provides precision and recall of 82.4% and 86.3%,
respectively, corresponding to performance gains of 22.3%
and 16.3% over SnapNet. The reasons are as follows. First,
DMM adopts an RNN-based model to transform a cell tower
sequence into a context vector, which conserves the historical
location information for map matching. For the HMM-based
approaches, they can only take the last road segment into
account for inference, leading to the loss of historical cell
tower information. Second, the location representer enables
high-quality cell tower representations, which allows to make
inference for unobserved cell towers. Third, we leverage a
reinforcement learning based framework to incorporate the
proposed heuristics into the map matching model. In the
following, we decompose the performance of location repre-
senter, map matcher and RL optimizer in Section VI-B.

Inference time. We use the collected dataset to evaluate the
running efficiency of different map matching methods in Fig-
ure 11. We have the following observations. First, DMM runs
much faster than the basic HMM-based methods (SnapNet
and SnapNet w/o I). This is because DMM only needs to
make a forward computation of neural networks to identify an
optimal route during the inference stage. In contrast, the basic
HMM-based approaches rely on heavy computations of the
shortest path calculations. When the sampling rate decreases,
the moving distance between cell tower samples increases.
This results in a slower search process for the shortest path.
Second, the inference time of FMM and SnapNet is similar

TABLE IV: Online inference time (s) of different approaches
w.r.t. the sampling rate of cell tower sequences (/min)

Sampling rate 0.2 0.4 0.6 0.8 1
ST-Matching 111.65 64.58 39.91 26.37 21.35

SnapNet w/o I 104.46 59.84 35.63 22.55 15.84
SnapNet 0.10 0.10 0.15 0.14 0.13

FMM 0.08 0.11 0.11 0.09 0.10
DMM 0.91 0.74 0.85 1.01 0.92

and faster than that of DMM. This is because these two
methods accelerate the calculation of the shortest paths during
the HMM process through pre-computation or interpolation
technology. For example, FMM pre-computes the shortest
paths between nodes to avoid the calculations of shortest paths
during the HMM process. However, the precision and recall
of SnapNet and FMM are worse than those of DMM although
those methods have less inference time. This is because FMM
only focuses on the efficiency enhancement and SnapNet is
more capable of handling the routes on highways. In urban
areas, the linear interpolation of low-sampling-rate cell tower
sequences introduces large noise between two cell towers.

Note that the inference time of FMM is quite different
from that reported in their study (about 25,000 samples per
second). This is because FMM focuses on the map matching
for the GPS-based samples. Because of small location errors,
they may have fewer candidate road segments, making map
matching speed fast. However, for the cellular data with
high location error, the number of possible road segments
around each cell tower sample increases greatly, resulting in
a significant increase in total number of shortest path queries
in the whole map matching process.

We also exploit inference time of different approaches
as sampling rate varies. By discretizing the sampling rate
into five levels, we obtain results in Table IV. As seen,
when the sampling rate is low, DMM can still maintain fast
inference. This is because DMM learns the mappings between
cell tower samples and road segments directly, and thus is
insensitive to sampling rate. In contrast, the inference time of
basic HMM models (i.e., ST-Matching and SnapNet w/o I)
increases significantly as the sampling rate decreases, since
when the sampling rate decreases, the distance between cell
tower samples may increase greatly, resulting in too much time
spent searching for the shortest path.

2) Offline training performance of DMM: We also evaluate
offline training performance of DMM by investigating training
accuracy in terms of two parameter settings (i.e., hidden layer
dimension and training data size) and training time.

Training accuracy on different training data sizes. We first
investigate the accuracy of DMM trained on different amounts
of training data, varying from 20% to 100%. Figure 12 (a)
presents the experimental results. As shown, the precision
and recall improve rapidly as we increase the training data
size from 20% to 80%, and slow down when we continue
to increase the training data size. This is because when
the training data are enough, more data provide very little
enhancement into performance gain.

We also explore the impact of training data with differ-
ent moving speeds on model accuracy. Considering that our

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

20% 40% 60% 80% 100%

Proportion of training data

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision

Recall

(a) Different size of training data

0-6 6-12 12-18 >18 All

Different levels of moving speed (km/h)

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision

Recall

(b) Different types of training data

Fig. 12: Offline training accuracy in terms of different training data sizes

32 64 128 256

Dimension of hidden layer

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

 o
r

R
ec

al
l

Precision

Recall

Fig. 13: Offline training accuracy in terms
of different hidden layer dimensions

passively-collected training data cannot reveal information of
transportation modes (e.g., bicycle, car driving, etc.), we split
our dataset into four sub-datasets with different levels of mov-
ing speeds (i.e., {≥ 0km/h & < 6km/h}, {≥ 6km/h & <
12km/h}, {≥ 12km/h & < 18km/h}, {≥ 18km/h})
according to the speed distribution of our testing data. For
fair comparison, we use the cell tower sequences in each sub-
dataset to train the map matching model and keep the same
number of cell tower sequences for different sub-datasets. We
also sample a dataset with same number cell tower sequences
from our raw dataset randomly to include various levels of
moving speed, which is denoted as All. Figure 12 (b) depicts
the experimental results. As shown, All brings the best map
matching performance. This may be because training data
with different moving speeds can learn more map matching
patterns in real mobile scenarios. On the contrary, the model
trained with low-speed cell tower sequences has the worst
performance. This may be because the cell tower sequences
with low speed are more likely to be sampled in the urban
area, where the road network density is high. As a result,
each cell tower sample has more possible road segments for
map matching, making it difficult for the model to determine
which road segment actually moves on.

Training accuracy on different hidden layer dimensions.
We analyze the impact of hidden layer dimension on training
accuracy of DMM. Figure 13 summarizes the impact of the
dimension of hidden layer on DMM. We find that increasing
the dimension from 32 to 128 significantly improves the accu-
racy, but shows a slight downward trend when the dimension is
larger than 128. This is because higher hidden layer dimension
causes over-fitting in the fixed number of training size.

Training time. We also test the training time of DMM. For
the location representer, we train it for three epochs on the
spatially-close cell tower pairs. For the other two models, we
terminate the training processes after the models converge.
The training time of location representer, map matcher and
RL optimizer take about 14 hours, 22 hours, and 17 hours,
respectively. Although the total training time seems long, it
only needs to be conducted once for inference.

B. Contribution on our proposed models in DMM

In response to RQ2, this section evaluates the effectiveness
of map matcher, location representer, and RL optimizer.

3 6 9 12 15
Length (km)

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

DMM

DMM w/o a

(a) Precision

3 6 9 12 15
Length (km)

0.6

0.7

0.8

0.9

1

R
ec

al
l

DMM

DMM w/o a

(b) Recall

Fig. 14: Effectiveness of our map matcher

1) Effectiveness of our map matcher: To enable more
accurate map matching for long cell tower sequences, we plug
an alignment component into the basic map matching model.
We explore the benefit of the alignment component under
different length of cell tower sequences, varying from 3 km to
15 km in Figure 14. We find that both the precision and recall
of the basic encoder-decoder model deteriorate rapidly as the
length of cell tower sequences increases. By incorporating the
alignment component, the results are better than that of the
basic encoder-decoder model, especially for the long input
sequences. This is due to the fact that the alignment component
only needs to memorize relevant location information in the
cell tower sequence, instead of the whole cell tower sequence.

2) Effectiveness of our location representer: We verify the
effectiveness of our spatial-aware cell tower representation
method in DMM and visualize learned representations of cell
towers to better understand our location representer.

Effectiveness of location representer. We implement a vari-
ant of DMM, named as DMM w/o LR, which simply uses
binary vectors to represent cell towers. As depicted in Fig-
ure 15, the precision and recall of DMM w/o LR are 76.5%
and 81.6%, worse than those of DMM. This is because DMM
w/o LR cannot learn the spatial proximity relationship so that it
is impossible to generalize the learned map matching patterns
to unobserved cell tower sequences.

Case study of location representer. We use a case study to
present how the location representer captures spatial proximity
among cell towers. We visualize the learned representations
of 4 cell towers in the cellular dataset. For each cell tower,
we find the closest 10 cell towers and lookup their vectors

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

DMM w/o LR DMM
0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

 o
r

R
e
c
a
ll

Precision

Recall

Fig. 15: Effectiveness of location repre-
senter Fig. 16: Spatial proximity of cell towers

DMM w/o O DMM
0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

 o
r

R
e
c
a
ll

Precision

Recall

Fig. 17: Effectiveness of the RL optimizer

represented by the location representer. Finally, we use Prin-
cipal Component Analysis (PCA) technique [35] (one of the
widely-used data dimension reduction method) to visualize
the cell towers in a two-dimensional space. For close cell
towers, we use the same sign and color. Figure 16 depicts
that the cell towers with the same marker are close to each
other, indicating that the location representer enables close
cell towers to have similar representations. This confirms the
spatial-aware characteristic of learned representation.

3) Effectiveness of our RL optimizer: We investigate the
performance of RL optimizer and use examples to show how
it helps for capturing the proposed heuristics.

Effectiveness of RL optimizer. We first study the perfor-
mance gain of RL optimizer on the accuracy and report results
in Figure 17. We observe that the RL optimizer significantly
improves the accuracy of basic map matching model in preci-
sion and recall by 13.7% and 3.1%, respectively. This indicates
that our reinforcement learning based scheme succeeds in
optimizing the map matching model with the heuristics we
observed in the real driving scenarios, such as preferring the
routes with less turns.

Case study of RL optimizer. The reward r(Y) of a map
matching route Y is the weighted sum of three components
aimed at capturing the proposed heuristics of the output route,
i.e., weighted spatial proximity to the cell tower sequence,
less frequency of turns and U-turns. Figure 18 illustrates by
examples to show how the three components in the reward
help in the map matching results. The top row shows the cell
tower sequences (blue points) and the ground truth (blue lines)
collected from the volunteers. The bottom row depicts the map
matching results of the basic map matching model and DMM,
denoted by dashed black lines and red lines. From the figure,
we demonstrate the effectiveness of three heuristics.

First, we exploit the effectiveness of our first heuristic, i.e.,
weighted spatial proximity, which rewards the routes that are
not only spatially proximity to the input cell tower sequence,
but also have moving speeds close to the road limits. As
shown in Figure 18 (a), a user drives near two roads, i.e.,
a national highway (the above yellow road with speed limit
60 km/h) and an expressway (the bottom orange road with
speed limit 120 km/h), and generates three cell tower samples
(moving speed about 36 km/h). Based on the smaller projected
distance between the cell tower sequence and the route, the
basic encoder-decoder model considers that the user is moving
on the expressway. However, according to the real driving

speed of the user, it is unrealistic for the user to drive on
the expressway. Towards this end, we optimize the basic map
matching model by considering the difference between road
speed limit and driving speed, so that the model can estimate
that users are more likely to drive on the national highway
rather than the expressway.

Next, we exploit the effectiveness of our second heuristic,
i.e., less frequency of turns. Due to the sparsity of cell tower
sequence, there may be multiple routes among cell tower sam-
ples. According to the observation that users prefer to choose
the route with less frequency of turns [36], we incorporate the
hint by a specific design of reward rT . From Figure 18 (b),
we find that DMM can select the route with less turns among
multiple possible routes. However, the encoder-decoder model
selects the shortest path between two consecutive cell tower
samples. This is because the basic model cannot consider the
route choice preference.

Finally, we examine the effectiveness of our third heuristic,
i.e., less U-turns. Due to large location error of cellular data,
the encoder-decoder model identifies the most paths accurately
except unexpected U-turns. We use the reward rU to eliminate
this phenomenon. From the results in Figure 18 (c), we find
that DMM succeeds in avoiding a U-turn. If the cell tower
samples actually indicate an occurrence of U-turn in the raw
cell tower sequence, DMM can generate a correct result with
U-turns adaptively.

C. DMM Robustness

In response to RQ3, this section investigates the robustness
of DMM in terms of sampling rates and location characteristics
of input cell tower sequences.

1) Robustness on sampling rate of cell tower sequences:
We first explore the impact of sampling rate of input cell
tower sequences on map matching performance. However,
only exploring model performance at different sampling rates
is limited: (i) Due to the difference in moving speed, the
movement distances between cell tower samples with differ-
ent sampling rates vary greatly. As a result, under different
movement distances, it is difficult to accurately evaluate the
map matching performance. (ii) Due to the differences in
factors such as smartphone use frequency and travel distance
of different users, the number of cell tower samples in the cell
tower sequences is different. When the number of cell tower
samples is large, it is possible to use the dependencies between

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

(a) Weighted spatial proxmity (b) Less frequency of turns (c) Less U-turns

Fig. 18: Case study of RL optimizer, showing the raw cell tower sequences, the ground truth (top), and the map-matched
routes of basic encoder-decoder model and DMM (bottom)

0.1 0.2 0.3 0.4 0.5
Sampling rate (/min)

0.4

0.6

0.8

1

P
re

ci
si

o
n

0-6 km/h

6-12 km/h

12-18 km/h

(a) Precision.

0.1 0.2 0.3 0.4 0.5
Sampling rate (/min)

0.4

0.6

0.8

1

R
ec

al
l

0-6 km/h

6-12 km/h

12-18 km/h

(b) Recall.

Fig. 19: Performance of DMM in terms of different sampling
rates of input cell tower sequences

cell tower samples to improve map matching performance;
whereas the number is small, it is difficult to capture the depen-
dencies. Towards this end, in this experiment, we investigate
the performance of map matching model for input cell tower
sequences with different moving speeds and numbers of cell
tower samples at different levels of sampling rates.

Impact of moving speed at different levels of sampling rates.
To explore the impact of moving speed at different levels of
sampling rates, we process the collected dataset into smaller
datasets with different levels of sampling rates and moving
speeds. First, we split the collected dataset into the datasets
with different levels of moving speeds. Based on the statistical
analysis on our collected dataset, we discretize the moving
speeds into the three levels, i.e. {≥ 0km/h & < 6km/h},
{≥ 6km/h & < 12km/h}, {≥ 12km/h & < 18km/h}
and obtain three datasets. Second, we divide each of the
three datasets into five sub-datasets according to the preseted
levels of sampling rates (i.e., 0.1/min, 0.2/min, 0.3/min,
0.4/min, 0.5/min). For a sub-dataset with the same level
of moving speed, we first sort the sequences according to
the ascending order in their sampling rates. Third, we down-

sample each trace to a certain sampling rate one by one until
all the sequences have been processed. For example, given a
trace with 10 cell tower samples in 10 minutes (corresponding
to the sampling rate at 1), if the sampling rate is larger than
the current level of sampling rate (e.g. 0.5/min), we remove
5 cell tower samples (10 − 0.5/min × 10min) to obtain the
specific sampling rate. If the number of the sequences of a
given level of sampling rate reaches 1/5 of the number of the
sequences in the sub-dataset, the following sequences will be
distributed to the next level.

Based on the processed 15 sub-datasets, we exploit the
DMM robustness on different levels of moving speeds and
sampling rates. As shown in Figure 19, we find that DMM pro-
vides relatively low accuracy under the circumstances of low
sampling rate. For example, for the cell tower sequences with
the average moving speed about 15 km/h and sampling rate
about 0.1 sample per minute (the average sampling distance
is about 2.5 km), DMM achieves the average precision and
recall about 43.6% and 51.2%. This is because it is difficult
for the map matching model to determine the specific route
between the sparse cell towers. In addition, with the increase
of the sampling rate or the decrease of the moving speed,
DMM provides the better precision and recall. This is because
slower moving speed and larger sampling rate lead to denser
cell tower sequences, thus more location information can be
used to localize the true route. For example, as the sampling
rate increases from 0.1 to 0.5, both the precision and recall
values increase sharply (e.g., 80.1% in precision and 87.2%
in recall for the sequences with the moving speed below 0.6
km/h). It also suggests the potential of DMM to be better in
the future, where mobile app usages will increase and thus the
sampling rate of cell tower sequences will be further increased.

Impact of number of cell tower samples at different levels
of sampling rates. We also explore the map matching perfor-
mance for input cell tower sequences with different numbers
of cell tower samples at different levels of sampling rates.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

2 8 14 20

The number of cell towers

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

 0.2-0.4 /min

 0.4-0.6 /min

 0.6-0.8 /min

 0.8-1 /min

(a) Precision.

2 8 14 20

The number of cell towers

0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

 0.2-0.4 /min

 0.4-0.6 /min

 0.6-0.8 /min

 0.8-1 /min

(b) Recall.

Fig. 20: Performance of DMM in terms of different sampling
numbers of input cell tower sequences

The procedure of processing the collected dataset into smaller
datasets with different levels of sampling rates and number
of cell tower samples is given as follows. First, we partition
the cell tower sequences into four datasets with five levels of
sampling rates (i.e., 0.2/min, 0.4/min, 0.5/min, 0.8/min,
1/min). Then, for each sequence in the four datasets, we
generate a set of cell tower sequences with different number
of cell tower samples by connecting the sequence between the
first cell tower sample and the remaining cell tower samples.
We keep the cell tower sequences with four levels of numbers
of cell tower samples, i.e., 2, 8, 14, 20. For example, for a cell
tower sequence X = x1, x2, x3, . . . , x9, we could generate
two sequences, i.e., X1 = x1, x2 and X2 = x1, x2, . . . , x8.

As shown in Figure 20, we find that the performance of
short sequences performs worse than that of long sequences.
This indicates that it is hard for our map matching model to
work for the short sequences. For example, the accuracy of cell
tower sequence of two cell towers achieves 24.4% in precision
and 34.6% in recall. The reasons for better performance of
long sequences are as follows. First, DMM adopts an RNN-
based model to transform the input into context vectors, which
conserves the location information for map matching. Second,
our performance criteria focus on the length of correctly-
matched route. For the long sequences, it is more tolerant
of partial matching errors than short sequences. Moreover,
with the increase of cell tower number and sampling rate,
DMM provides the better accuracy. For example, when the
number of cell towers in a cell tower sequence is larger than
8 and the sampling rate is larger than 0.6/min (corresponding
to average moving time of the routes is about 13.33 min and
average length is about 2 km with an average speed about 9
km/h), DMM can achieve 61.6% in precision and 69.2% in
recall. This is because longer sequences contain more location
information that can be used for map matching.

2) Robustness on location characteristics of cell tower
sequences: This experiment investigates the impact of location
characteristics on map matching performance. By dividing the
collected cell tower sequences into 4 sub-datasets according
to average number of road segments around each cell tower
sequence, we obtain the experimental results in Figure 21. We
can find that the map matching accuracy shows a downward
trend when the road network complexity around the cell tower
sequences becomes higher. This is because when there are a
large number of road segments near the cell tower sequences,
more feasible candidate road segments are considered into the

0

0.5

1

1.5

In
fe

re
n
ce

 t
im

e
(s

)

6-36 36-66 66-96 96-126

Average number of road segments around each cell tower sequence

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n
 o

r
R

ec
al

l

Precision

Recall

Time

Fig. 21: Performance of DMM in terms of location character-
istics of input cell tower sequences

inference process, making it difficult to determine the most
likely route. In contrast, when the average number of road
segments is small, a user is more likely to drive in remote
areas, which have less feasible routes for map matching.

VII. RELATED WORK

A. Map matching for cellular data
Many studies [8], [16], [17], [25], [37]–[39] have explored

map matching using cellular data. Algizawy et al. [38] extend
the typical HMM for map matching cellular-based data for
traffic analysis. CTrack [37] proposes a grid-based HMM
approach to identify the most likely roads. However, the
inference time of these methods is very slow. To provide fast
map matching, several studies have been proposed to speed
up the searching process of the shortest paths. For example,
SnapNet [8] develops an HMM-based model for map matching
in view of the road information. FMM [25] proposes an al-
gorithm combining hidden Markov model and precomputation
technique. By pre-calculating the shortest paths between the
nodes on the road network and storing it in a hash table,
FMM avoids repeated routing queries and greatly improves
the map matching performance. However, these approaches
cannot consider high-order historical location information. In
this work, we develop an RNN-based model to directly learn
the mappings between cell towers and road segments, which
not only avoids extensive computations of the shortest paths
during inference but also considers multiple historical roads
for inferring next road segment.

Meanwhile, several studies [12], [14], [15], [40], [41] have
been proposed to localize the measurement record (MR) data
collected by cellular network infrastructures. The types of
MR data include sector information, signal latency, signal
strength, signal quality, etc. Cell∗ [40] and CTS [12] estimate
location using sector information. DeepLoc [14] localizes the
accurate position using ubiquitous cellular signals received
from adjacent cell towers. Ergen et al. [42] develop an HMM-
based localization model based on the received signal strength
indicator sent by adjacent cell towers. RecuLSTM [15] devel-
ops a deep learning based framework for location estimations
based on measurement records. However, these data are not
available in our dataset.

B. Map matching for GPS data
Besides cellular data based map matching studies, many

approaches are also developed for GPS data [9]–[11], [22],

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

[23]. Mosig et al. [43] apply Fréchet distance for map
matching, but they cannot consider road network hints. Many
advanced algorithms, such as conditional random field [23],
particle filter [44] and hidden Markov model [9]–[11], are
developed to deal with complex road networks. For example,
ST-Matching [10] map-matches GPS trajectories with spatial
and temporal information. However, these approaches cannot
be used in DMM because of large location error and low
sampling rate of cellular data.

C. Map matching applications
Map matching can be used as a fundamental step for many

trajectory mining applications [2], [19], [45], [46]. VTrack [45]
leverages an HMM-based map matching scheme to estimate
road traffic. TS-Join [47] proposes a network-based trajectory
similarity join by mapping massive trajectories on the road.
Prokhorchuk et al. [2] infer travel time distributions based on
map-matched floating car data. TrajCompressor [46] designs
a trajectory compression framework, along with the first pre-
processing step of map matching.

VIII. DISCUSSION

DMM heuristics. DMM incorporates several heuristics to
achieve the goal of accurate map matching. In the following,
we show the validity and rationality of these heuristics. First,
we assume that people normally prefer to select a sequence
of roads with speed limits close to the moving speeds. The
assumption is confirmed by vehicle speed transportation statis-
tics for Great Britain 4, where the average speeds are observed
at sampled Automatic Traffic Counters (ATC) locations, show-
ing that as the applicable speed limits for road types increase,
the average driving speed of each vehicle type becomes higher.
Second, we assume that people normally prefer the routes
with less frequency of turns between origin and destination.
Venigalla et al. [36] used a real-world GPS data in urban
areas to exploit the effect on route choices and revealed that
drivers would rather spend more time or travel longer distance
on roads than make frequent turns. Third, we also assume
that people normally prefer to follow the same direction,
rather than completely changing the moving direction. This
is confirmed by the work [48]. Mondal et al. analyzed the
vehicles at six areas and showed that 93.4% of drivers prefer
straight roads.

Privacy issues. We use the cellular dataset provided by
mobile carriers to train the models in DMM. The data have
been anonymized to protect privacy by replacing the identifiers
by hash codes. The data only contain anonymous samples of
cell towers, without any information related to text messages
or mobile phone usages. Moreover, we randomly select a
portion of cell tower sequences, which can further prevent
leaking privacy.

We collect the GPS locations and cellular data from vol-
unteers for evaluation. We anonymize users’ identifiers in our
dataset. We inform the volunteers of the experimental details
and obtain their consents to use the data for this study.

Limitations. DMM has several limitations. First, in order to
ensure high precision and recall, the higher sampling rates of

4https://www.gov.uk/government/statistics/vehicle-speed-compliance-
statistics-for-great-britain-2020

cell tower sequences (larger than 0.2/min in the urban area)
are required for our system (Figure 19). It will be better to
extend our system, where cell tower density and mobile app
usages will be further increased in the future. Second, DMM
targets the driving scenario with long moving distance and
time. The scenario of short-distance or short-time movement
(e.g., walking) remains to be explored. Third, compared with
the HMM models that have little deployment cost, DMM
requires at least about 0.6 million anonymous cell tower
sequences for effective offline training and a heavy training
process on sufficient hardware resources (e.g., GPU). One
possible way to address this problem is to employ effective
data augmentation technique [39] to learn the model. Fourth,
DMM leverages the estimated labels generated from an HMM
algorithm to train its map matching model. It may learn some
inaccurate map matching patterns of the HMM algorithm.
More labeling methods for training data are worthy to be
explored. Fifth, DMM focuses on the map matching problem
for coarse-grained cellular data. For other location data with
higher positioning accuracy (e.g., GPS-based data), there may
be a large number of possible inputs (GPS coordinates), which
leads to the issue of model convergence. As a result, DMM
cannot be directly applied to the data with higher positioning
accuracy. In the future, the map matching ability of DMM with
respect to different positioning accuracy of location sensors is
worth exploring.

IX. CONCLUSION

In this paper, we develop a deep reinforcement learning
based map matching framework for coarse-grained and low-
sampling-rate cellular-based location sequences. By combin-
ing an encoder-decoder based map matching model, a location
representation model, and a reinforcement learning based
optimizer together, DMM provides effective and efficient map
matching for cellular data. Extensive experiments on a large
dataset and real-world collected cell tower sequences in a
large city show that DMM can achieve high accuracy and fast
inference time.

REFERENCES

[1] Z. Feng and Y. Zhu, “A survey on trajectory data mining: Techniques
and applications,” IEEE Access, vol. 4, pp. 2056–2067, 2016.

[2] A. Prokhorchuk, J. Dauwels, and P. Jaillet, “Estimating travel time
distributions by Bayesian network inference,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–10, 2019.

[3] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti, “Real-
time urban monitoring using cell phones: A case study in Rome,” IEEE
Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp.
141–151, 2010.

[4] S. Liu, Y. Yue, and R. Krishnan, “Non-myopic adaptive route planning in
uncertain congestion environments,” IEEE Transactions on Knowledge
and Data Engineering, vol. 27, no. 9, pp. 2438–2451, 2015.

[5] R. Becker, K. Hanson, S. Isaacman, M. L. Ji, M. Martonosi, J. Rowland,
S. Urbanek, A. Varshavsky, and C. Volinsky, “Human mobility charac-
terization from cellular network data,” Communications of the ACM,
vol. 56, no. 1, pp. 74–82, 2013.

[6] Z. Liu, Z. Li, K. Wu, and M. Li, “Urban traffic prediction from mobility
data using deep learning,” IEEE Network, vol. 32, no. 4, pp. 40–46, 2018.

[7] E. Thuillier, L. Moalic, S. Lamrous, and A. Caminada, “Clustering
weekly patterns of human mobility through mobile phone data,” IEEE
Transactions on Mobile Computing, vol. 17, no. 4, pp. 817–830, 2018.

[8] R. Mohamed, H. Aly, and M. Youssef, “Accurate real-time map matching
for challenging environments,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 18, no. 4, pp. 847–857, 2017.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 17

[9] G. Hu, J. Shao, F. Liu, Y. Wang, and H. T. Shen, “If-Matching: Towards
accurate map-matching with information fusion,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 1, pp. 114–127, 2016.

[10] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate gps trajectories,” in Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2009, pp. 352–361.

[11] P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in ACM SIGSPATIAL GIS, 2009.

[12] X. Huang, Y. Li, Y. Wang, X. Chen, Y. Xiao, and L. Zhang, “Cts: A
cellular-based trajectory tracking system with gps-level accuracy,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 1, no. 4, pp. 1–29, 2018.

[13] G. R. Jagadeesh and T. Srikanthan, “Online map-matching of noisy and
sparse location data with hidden markov and route choice models,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 9, pp.
2423–2434, 2017.

[14] A. Shokry, M. Torki, and M. Youssef, “Deeploc: A ubiquitous accurate
and low-overhead outdoor cellular localization system,” in Proceedings
of the 26th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2018, pp. 339–348.

[15] Y. Zhang, W. Rao, and Y. Xiao, “Deep neural network-based telco
outdoor localization,” in Proceedings of the 16th ACM Conference on
Embedded Networked Sensor Systems, 2018, pp. 307–308.

[16] J. Feng, Y. Li, K. Zhao, Z. Xu, T. Xia, J. Zhang, and D. Jin, “Deepmm:
deep learning based map matching with data augmentation,” IEEE
Transactions on Mobile Computing, vol. 21, no. 7, pp. 2372–2384, 2020.

[17] Y. Zhang, A. Y. Ding, J. Ott, M. Yuan, J. Zeng, K. Zhang, and W. Rao,
“Transfer learning-based outdoor position recovery with telco data,”
IEEE Transactions on Mobile Computing, 2020.

[18] M. Srivatsa, R. Ganti, J. Wang, and V. Kolar, “Map matching: Facts
and myths,” in Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2013, pp.
484–487.

[19] Z. Shen, W. Du, X. Zhao, and J. Zou, “Retrieving similar trajectories
from cellular data at city scale,” arXiv preprint arXiv:1907.12371, 2019.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in Conference
on Empirical Methods in Natural Language Processing, 2014.

[22] W. Y. Ochieng, M. A. Quddus, and R. B. Noland, “Map matching in
complex urban road networks,” Revista Brasileira de Cartografia, vol. 2,
no. 55, 2003.

[23] X. Liu, L. Kang, M. Li, and L. Feng, “A ST-CRF map-matching method
for low-frequency floating car data,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 5, pp. 1241–1254, 2017.

[24] Y. Wei, M. Mao, X. Zhao, J. Zou, and P. An, “City metro network
expansion with reinforcement learning,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 2646–2656.

[25] C. Yang and G. Gidofalvi, “Fast map matching, an algorithm integrating
hidden markov model with precomputation,” International Journal of
Geographical Information Science, vol. 32, no. 3, pp. 547–570, 2018.

[26] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, 1967.

[27] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[28] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2018.

[29] X. Ding, W. Du, and A. Cerpa, “Octopus: Deep reinforcement learning
for holistic smart building control,” in Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, 2019, pp. 326–335.

[30] Z. Shen, K. Yang, X. Zhao, J. Zou, and W. Du, “Deepapp: A deep rein-
forcement learning framework for mobile application usage prediction,”
IEEE Transactions on Mobile Computing, vol. 22, no. 02, pp. 824–840,
2023.

[31] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
pp. 229–256, 1992.

[32] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level
training with recurrent neural networks,” in International Conference
on Learning Representations, 2016.

[33] S. Isaacman, R. Becker, R. Cáceres, S. Kobourov, M. Martonosi, J. Row-
land, and A. Varshavsky, “Identifying important places in people’s lives
from cellular network data,” in International Conference on Pervasive
Computing, 2011, pp. 133–151.

[34] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[35] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
459, 2010.

[36] M. Venigalla, X. Zhou, and S. Zhu, “Psychology of route choice in
familiar networks: Minimizing turns and embracing signals,” Journal of
Urban Planning and Development, vol. 143, no. 2, p. 04016030, 2017.

[37] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, and
L. Girod, “Accurate, low-energy trajectory mapping for mobile devices,”
in USENIX NSDI, 2011.

[38] E. Algizawy, T. Ogawa, and A. El-Mahdy, “Real-time large-scale map
matching using mobile phone data,” ACM Transactions on Knowledge
Discovery from Data, vol. 11, no. 4, pp. 1–38, 2017.

[39] H. Rizk, A. Shokry, and M. Youssef, “Effectiveness of data augmenta-
tion in cellular-based localization using deep learning,” in 2019 IEEE
Wireless Communications and Networking Conference. IEEE, 2019,
pp. 1–6.

[40] I. Leontiadis, A. Lima, H. Kwak, R. Stanojevic, D. Wetherall, and
K. Papagiannaki, “From cells to streets: Estimating mobile paths with
cellular-side data,” in Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies,
2014, pp. 121–132.

[41] H. Rizk and M. Youssef, “Monodcell: A ubiquitous and low-overhead
deep learning-based indoor localization with limited cellular infor-
mation,” in Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2019, pp.
109–118.

[42] S. C. Ergen, H. S. Tetikol, M. Kontik, R. Sevlian, R. Rajagopal, and
P. Varaiya, “RSSI-fingerprinting-based mobile phone localization with
route constraints,” IEEE Transactions on Vehicular Technology, vol. 63,
no. 1, pp. 423–428, 2013.

[43] A. Mosig and M. Clausen, “Approximately matching polygonal curves
with respect to the fréchet distance,” Computational Geometry, vol. 30,
no. 2, pp. 113–127, 2005.

[44] A. U. Peker, O. Tosun, and T. Acarman, “Particle filter vehicle localiza-
tion and map-matching using map topology,” in 2011 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2011, pp. 248–253.

[45] A. Thiagarajan, L. Ravindranath, K. Lacurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson, “VTrack: Accurate, energy-aware road
traffic delay estimation using mobile phones,” in ACM SenSys, 2009.

[46] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng, “Tra-
jcompressor: An online map-matching-based trajectory compression
framework leveraging vehicle heading direction and change,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp.
2012–2028, 2019.

[47] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis,
“Trajectory similarity join in spatial networks,” Proceedings of the VLDB
Endowment, vol. 10, no. 11, 2017.

[48] V. K. Sharma, S. Mondal, and A. Gupta, “Analysis of u-turning
behaviour of vehicles at mid-block median opening in six lane urban
road: A case study.” International Journal for Traffic & Transport
Engineering, vol. 7, no. 2, 2017.

Zhihao Shen received his B.E. degree in automation
engineering from School of Electronic and Infor-
mation, Xi’an Jiaotong University, Xi’an, China,
in 2016, where he is currently pursuing the Ph.D.
degree with the Systems Engineering Institute. His
research interests include big data analytics, mobile
computing and deep reinforcement learning.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 18

Kang Yang received his B.E. degree in automation
engineering from School of Electrical and Control
Engineering, Xi’an University of Science and Tech-
nology, Xi’an, China, in 2016, and the M.E. degree
in control engineering from School of Electronic
and Information, Xi’an Jiaotong University, Xi’an,
China, in 2019. He is now the Ph.D. candidate of
Department of Computer Science and Engineering,
University of California, Merced. His research inter-
ests include the Internet of Things, mobile comput-
ing.

Xi Zhao was awarded his Ph.D. degree in computer
science from the Ecole Centrale de Lyon, Ecully,
France, in 2010. He conducted research in the fields
of biometrics and pattern recognition as a Research
Assistant Professor with the Department of Com-
puter Science, University of Houston, USA. He is
currently a Professor with the Xi’an Jiaotong Uni-
versity, Xi’an, China. His current research interests
include mobile computing and behavior computing.

Jianhua Zou received the Bachelor’s, Master’s, and
Doctor’s degrees from the Huazhong University of
Science in 1984, 1987, and 1991, respectively. He
is currently Professor in Xi’an Jiaotong University.
His main research areas include: control systems
and computer networks, multimedia, cognition and
knowledge discovery, high voltage insulation moni-
toring, and complex system analysis. Since 1991, he
has been the project leader and has completed about
20 research projects, including National Natural Sci-
ence projects.

Wan Du is currently an Assistant Professor at the
University of California, Merced. Before moving to
Merced, Dr. Du had worked as a Research Fellow
in the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 2012-
2017. He received the B.E. and M.S. degrees in Elec-
trical Engineering from Beihang University, China,
in 2005 and 2008, respectively, and the Ph.D. degree
in Electronics from the University of Lyon (cole
centrale de Lyon), France, in 2011. His research in-
terests include the Internet of Things, cyber-physical

system, distributed networking systems, and mobile systems.

Junjie Wu received the PhD degree in management
science and engineering from Tsinghua University.
He is currently a full professor with Information Sys-
tems Department, Beihang University, the director of
the Research Center for Data Intelligence (DIG), and
the director of the Institute of Artificial Intelligence
for Management. His research interests include data
mining and complex networks. He was the recipient
of the NSFC Distinguished Young Scholars Award
and MOE Changjiang Young Scholars Award in
China.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3383881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on April 11,2024 at 01:18:29 UTC from IEEE Xplore. Restrictions apply.

