
37

Driving Maneuver Anomaly Detection Based on Deep

Auto-Encoder and Geographical Partitioning

MIAOMIAO LIU and KANG YANG, Dept. of Computer Science and Engineering, University of

California, Merced, USA

YANJIE FU, Dept. of Computer Science, University of Central Florida, USA

DAPENG WU, Dept. of Computer Science, City University of Hong Kong, China

WAN DU, Dept. of Computer Science and Engineering, University of California, Merced, USA

This paper presents GeoDMA, which processes the GPS data from multiple vehicles to detect anomalous driv-

ing maneuvers, such as rapid acceleration, sudden braking, and rapid swerving. First, an unsupervised deep

auto-encoder is designed to learn a set of unique features from the normal historical GPS data of all drivers.

We consider the temporal dependency of the driving data for individual drivers and the spatial correlation

among different drivers. Second, to incorporate the peer dependency of drivers in local regions, we develop

a geographical partitioning algorithm to partition a city into several sub-regions to do the driving anomaly

detection. Specifically, we extend the vehicle-vehicle dependency to road-road dependency and formulate the

geographical partitioning problem into an optimization problem. The objective of the optimization problem

is to maximize the dependency of roads within each sub-region and minimize the dependency of roads be-

tween any two different sub-regions. Finally, we train a specific driving anomaly detection model for each

sub-region and perform in-situ updating of these models by incremental training. We implement GeoDMA

in Pytorch and evaluate its performance using a large real-world GPS trajectories. The experiment results

demonstrate that GeoDMA achieves up to 8.5% higher detection accuracy than the baseline methods.

CCS Concepts: • Computing methodologies → Model development and analysis; Artificial intelli-

gence; • Applied computing→ Transportation;

Additional Key Words and Phrases: Anomaly detection, deep auto-encoder, peer dependency, geographical

partitioning

ACM Reference format:

Miaomiao Liu, Kang Yang, Yanjie Fu, Dapeng Wu, and Wan Du. 2023. Driving Maneuver Anomaly Detec-

tion Based on Deep Auto-Encoder and Geographical Partitioning. ACM Trans. Sen. Netw. 19, 2, Article 37

(April 2023), 22 pages.

https://doi.org/10.1145/3563217

This research was partially supported by the National Science Foundation (NSF) via the grant numbers: 2008837, 2007210,

1755946, I2040950 and 2006889. Some preliminary results have been published as a poster in “The 7th ACM International

Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys 2020)” [1]. The work was done

when Dr. Dapeng Oliver Wu was in the department of Electrical & Computer Engineering at the University of Florida.

Authors’ addresses: M. Liu, K. Yang, and W. Du (corresponding author), Dept. of Computer Science and Engineering, Uni-

versity of California, Merced, Merced, CA, USA; emails: {mliu71, kyang73, wdu3}@ucmerced.edu; Y. Fu, Dept. of Computer

Science, University of Central Florida, Florida, USA; email: yanjie.fu@ucf.edu; D. Wu, Dept. of Computer Science, City

University of Hong Kong, Hong Kong, China; email: dapengwu@cityu.edu.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1550-4859/2023/04-ART37 $15.00

https://doi.org/10.1145/3563217

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

https://orcid.org/0000-0001-8255-5891
https://orcid.org/0000-0001-8248-4894
https://orcid.org/0000-0002-1767-8024
https://orcid.org/0000-0002-2732-6954
https://orcid.org/0000-0003-1755-0183
https://doi.org/10.1145/3563217
mailto:permissions@acm.org
https://doi.org/10.1145/3563217
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563217&domain=pdf&date_stamp=2023-04-17

37:2 M. Liu et al.

1 INTRODUCTION

Although annual traffic fatalities have decreased from 42,702 in 2006 to 36,560 in 2018 in the United
States, it is far from the “Toward Zero Deaths National Strategy” goal [2]. Most of the fatal crashes
are the results of human error or negligence, such as speeding, distracted driving, or driving under
the influence of drugs and alcohol [3].

Smartphone apps [4, 5] have been developed by companies like Google and Uber to detect
anomalous driving maneuvers. They read instant driving sensing data (e.g., vehicle velocity and
orientation) from smartphone sensors for driving anomaly detection. A recent work, pBEAM [6],
applies conditional adversarial recurrent neural network to develop a personalized model for each
driver. It detects anomalies from instant sensor readings and captures the temporal dependency
of driving data. However, these existing solutions are focused on individual drivers, the peer de-
pendency of drivers are not considered, i.e., the correlation of driving maneuvers across vehicles,
which is normally caused by local road structures, traffic conditions, and driving habits. Peer de-
pendency depicts the similarity of driving maneuvers across vehicles, which is an important factor
that needs to be considered in driving anomaly detection. For example, if most of the drivers in
proximity show similar driving maneuvers during the same period, they should not be related to
anomalous drivings.

In this paper, we develop GeoDMA, which detects driving maneuver anomaly in real time
by analyzing the instant GPS samples of drivers and taking the peer dependency of drivers
into account. Driving maneuver anomalies, like aggressive driving, distracted driving, drowsy
driving, and driving under the influence, can be analyzed from vehicle-based features including
the pressure exerted on the brake, the fluctuation on vehicle speed, the angle of wheels, and the
steering wheel movement [7–11]. We summarize the anomalous driving maneuvers that can be
detected by GeoDMA in Table 1, including rapid acceleration, sudden braking, rapid swerving,
frequent speed, and direction changing. To effectively detect anomalous driving maneuvers in real
time, GeoDMA takes instant GPS samples as input, and processes them by a deep auto-encoder
model for driving maneuver anomaly detection. The deep auto-encoder model is designed by
considering both temporal dependency of each individual vehicle and peer dependency across
different vehicles. In addition, to capture stronger vehicle-vehicle peer dependency, a geographical
region partitioning algorithm is developed to divide a city into different sub-regions, in each of
which we train an auto-encoder-based driving anomaly detector, further improving the detection
accuracy.

Our deep auto-encoder model is composed of an encoder and a decoder. The encoder takes
the driving state transition feature vector calculated from the instant GPS samples of vehicles
as input. A driving state is a combination of a speed-related operation and a direction-related
operation. The driving speed and direction of a vehicle can be calculated from its GPS samples.
The encoder is designed as a fully-connect layer and a Recurrent Neural Network (RNN) layer,
which transforms an original driving state transition feature into a representation feature in a
lower-dimensional latent space. The decoder is a fully-connected neural network with two fully-
connected layers, which recovers the lower-dimensional representation feature to a reconstruction
feature. It takes the representation feature as input and outputs the reconstructed feature. The
reconstructed feature has the same dimension as the input of the encoder (the original driving state
transition feature). The temporal dependency can be captured by the RNN, and peer dependency
is incorporated as a regularizer of the deep auto-encoder model. GeoDMA uses the reconstruction
error between the original feature vector and the reconstructed feature vector of the auto-encoder
for anomaly detection, since anomalous driving data cannot be represented and reconstructed
well by a model that was trained only by normal driving data. With unsupervised learning, the

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:3

Table 1. Anomalous Driving Maneuvers that can be Detected by GeoDMA

Anomalous Driving Maneuvers Corresponding Anomaly in Driving Feature

Rapid Acceleration
The transition duration from a driving state to an acceleration-related

driving state is small

Sudden Braking
The transition duration from a driving state to a deceleration-related

driving state is small

Rapid Swerving
The transition duration from a driving state to a bearing-related driving

state is small

Frequent Acceleration or Deceleration
The transition probability from a driving state to an acceleration-related

or deceleration-related state is high

Frequent Turns
The transition probability from a driving state to a bearing-related

driving state is high

labeling of anomalous driving data is not needed when training the model. The deep auto-encoder
is trained to learn what the normal driving maneuvers look like. Any driving maneuvers that do
not follow the distribution of normal driving maneuvers will be considered as anomalous driving
maneuvers.

To maximize the effectiveness of spatial peer dependency in driving maneuver anomaly
detection, GeoDMA incorporates the First Law of Geography [12], “Everything is related to
everything else, but near things are more related than distant things”. [13] also proposes that locality
preservation of spatial data leads to better service. We consider the locality of peer dependency in
our system. Since the road layouts and traffic conditions vary across a city, the driving behaviors
exist in common patterns in small regions with similar contextual features (i.e., traffic conditions
and road structures). The peer dependency in a local area is stronger than that in the entire
city. We develop a geographical partitioning scheme to perform driving anomaly detection in
a geo-distributed way. Specifically, we divide a city into several sub-regions. The data of the
vehicles from the same sub-region will be collected together to develop the anomaly detection
model for this sub-region. The detection accuracy of the model in each sub-region is expected
to achieve higher accuracy than the centralized model that is trained by the data from the whole
city.

The objective of geographical region partitioning is to maximize the spatial dependency within
the same sub-region and minimize the spatial dependency among different sub-regions. The road
segments that have stronger dependency are supposed to be divided into the same sub-region and
road segments that have weaker dependency are supposed to be divided into different sub-regions.
We first construct the road network of a city as an undirected and weighted graph. We treat the
road segments of the city as vertices of the graph. There is an edge between two vertices if the
roads they represent are geographically connected. We then formulate the geographical region
partitioning problem as an optimization problem and solve the optimization problem by Normal-

ized Cut (NCut) algorithm. In NCut algorithm, we extend the vehicle-vehicle spatial dependency
to calculate the road-road spatial dependency. The weight of an edge is specifically designed to
depict the spatial dependency between two vertices (road segments), which is measured by the
similarity of the driving maneuvers that have happened on these road segments and similarity of
the representation features of those driving maneuvers learned from the auto-encoder.

After obtaining the partitioning result, we train a specific anomaly detection model for each sub-
region and perform in-situ updating of these models by incremental training to further improve
the detection accuracy. We implement GeoDMA in Pytorch platform [14] and conduct extensive
experiments using the T-Drive dataset [15, 16], which contains vehicle GPS trajectories collected
from a big city. Results from extensive experiments demonstrate that GeoDMA achieves up to 8.5%
and 2.2% higher accuracy than the single-user approach and the centralized approach.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

37:4 M. Liu et al.

Fig. 1. The trajectories of vehicles that receive

low detection accuracy with single-user models.

Fig. 2. The relationship between vehicles’ distance

and vehicles’ driving maneuver similarity.

2 MOTIVATION

In this section, we process the T-Drive dataset and demonstrate the motivation of two key compo-
nents in GeoDMA. The detailed descriptions of the T-Drive dataset is in Section 5.2.

Peer dependency of multiple drivers. Peer dependency is considered in driving behavior
analysis [17], which processes the historical GPS trajectories of vehicles to evaluate their driving
history. We believe peer dependency is also useful for online driving anomaly detection. For ex-
ample, if a driver exhibits stop-and-go (deceleration and acceleration) frequently, it is difficult to
validate whether this kind of behavior is caused by the driver’s anomalous driving maneuver, the
road structure, or the local traffic conditions. If a driver is observed to consistently show different
driving maneuvers from the other drivers around him/her, it’s reasonable to suspect that the driv-
ing maneuvers of that driver are abnormal. Here we do experiments to investigate the importance
of peer dependency in anomaly detection. We use auto-encoder (details in Section 3.2) to detect
anomalous driving maneuvers and test the performance of single-user models. We use the driving
data of each driver to train an auto-encoder detector independently and analyze the detection re-
sult of each single-user model. We find that the accuracy of some models can be lower than 0.7.
Figure 1 highlights the trajectories of those vehicles that receive inaccurate driving anomaly detec-
tion at the same time slot. They are geographically close and driving in the downtown of the city.
The driving maneuvers of these vehicles can be the reference to one another when developing the
driving anomaly detection models. Based on this observation, we propose to develop a centralized
model by incorporating peer dependency in the single-user model to improve its accuracy.

Locality of peer dependency. The centralized model is able to consider the vehicle-vehicle
peer dependency across a city. However, the peer dependency should be considered in a fine-
grained way. If a vehicle is driving far away from the other vehicle, they will have less peer depen-
dency than some vehicles that are close to one another because it is hard for a centralized model
developed for a big city to take all local features of the city into consideration. Figure 2 depicts
the relationship between the similarity of driving features and their distances between any two
drivers. The driving feature similarity is measured by Equation (5), which will be introduced in
details in Section 3.2.2. We use 504 drivers to do the experiments and show the relationship of the
driving feature similarities and the distances of all driver pairs. As shown in Figure 2, as the dis-
tance increases, the similarity of driving features decreases. The experiment result confirms with
the First Law of Geography, which motivates us to partition the road segments in proximity into
the same region for driving maneuver anomaly detection.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:5

Fig. 3. System architecture of GeoDMA.

3 SYSTEM DESIGN OF GEODMA

In this section, we introduce the design of GeoDMA, including a brief overview, deep auto-encoder
for driving anomaly detection, geographical partitioning, sub-region model, and in-situ updating.

3.1 System Overview of GeoDMA

Figure 3 depicts the architecture of GeoDMA, which is mainly composed of two modules, i.e., a deep
auto-encoder for driving anomaly detection and a geographical region partitioning algorithm.

The driving data from each driver will be firstly converted into the driving state transition vec-
tors (Section 3.2.1). They are the input of our deep auto-encoder network. In the deep auto-encoder,
we consider both individual vehicle temporal dependency and the vehicle-vehicle spatial depen-
dency (Section 3.2.2). The deep auto-encoder model is trained by normal driving maneuvers; it
cannot reconstruct the anomalous driving data accurately. We use the reconstruction error of the
model to perform driving maneuver anomaly detection (Section 3.2.3).

To further improve detection accuracy, we partition a city into multiple sub-regions by a geo-
graphical region partitioning algorithm. We formulate the region partitioning problem as a graph
partitioning problem (Section 3.3.1). As shown in Figure 3, the inputs of region partitioning in-
clude the road network of a city, the vehicle trajectories and the representation features generated
by the centralized auto-encoder. We develop an NCut algorithm to solve the optimization problem
(Section 3.3.2). Finally, we train a specific anomaly detection model for each sub-region and update
these models in-situ by incremental training (Section 3.4).

3.2 Auto-Encoder for Driving Maneuver Anomaly Detection

Figure 4 presents the inference workflow of our driving anomaly detection algorithm. During each
time window, the vehicle GPS data is fed into the vector calculator to generate the original driving
feature vector x (state transition vector). Then the auto-encoder verifies x is normal or anomalous.
Next, we will introduce the vector calculator, the deep auto-encoder, and the driving anomaly
detection in detail.

3.2.1 Vector Calculator. In the context of driving maneuver anomaly detection, the driving
state of a vehicle can be described by its moving speed and direction. The speed-related driving op-
erations include acceleration, deceleration, and driving in a constant speed. The direction-related
operations include turning left, turning right, and going straight. A speed-related operation

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

37:6 M. Liu et al.

Fig. 4. The workflow of deep auto-encoder. The vehicle GPS data is preprocessed by vector calculator. It gen-

erates the original feature vector x . The vector x is represented by combining the state transition probability

vector and the state transition duration vector. This feature x is mapped to a representation feature z by the

encoder. Then z is reconstructed as x̂ by the decoder. Finally, we leverage the reconstruction error Le as the

criterion to detect anomaly.

and a direction-related operation constitute a driving state. There can be nine driving states:
S1 (acceleration, turning left), S2 (acceleration, turning right), S3 (acceleration, going straight),
S4 (deceleration, turning left), S5 (deceleration, turning right), S6 (deceleration, going straight),
S7 (constant speed, turning left), S8 (constant speed, turning right) and S9 (constant speed, going
straight). The details about speed and direction calculation from GPS data are introduced by
Equations (14) and (15).

When a vehicle is moving, the driving state of a vehicle usually changes over time. A sequence
of driving states of a vehicle during a time window can be obtained. For instance, [S2, S2, S5, . . . ,
S8]. Such a time-varying sequence can be summarized as a state transition graph. As shown in
the vector calculator of Figure 4, the nodes of the graph are driving states, there are nine nodes
in the graph and they are fully connected, we use five nodes in the figure for simplicity. The
weights of edges depict the relations between any two states [18]. In this paper, the weights
are constructed from two aspects, the state transition probability and state transition duration
between two driving states [17]. The value of the weights are normalized between 0 and 1.
The driving state transition probability is the frequency a driver drives from a state to another
state during a time window. The driving state transition duration is how long a driver takes to
respond from one driving state to another. For example, if the transition from <constant speed,
going straight> to <acceleration, going straight> is small, it indicates this is a rapid acceleration
anomaly.

During each time window, we can get a state transition probability graph and a a state transi-
tion duration graph. The feature of the driving maneuvers are captured from these two graphs.
The adjacent matrices of these two graphs can be flattened into two vectors, the state transition
probability vector and the state transition duration vector. As shown in Figure 4, the combination
of these two vectors is the original feature x , which is the output of the vector calculator and the
input of the deep auto-encoder. Since there are nine states, there can be 81 state transitions (includ-
ing self to self) for both probability graph and duration graph, the dimension of x is 162. The state
transition vectors that differ significantly from the normal state transition vectors will be detected
as anomalies.

3.2.2 Deep Auto-Encoder. As shown in Figure 4, the encoder projects the original feature vector
x into a lower-dimensional feature, i.e., representation feature z. The decoder reconstructs z to x̂ .
The more similar the x and the x̂ , the more accurate the model is. In this work, the encoder is
a fully-connected layer and a Gated Recurrent Unit (GRU) [19] layer. GRU can capture the
temporal dependency of the input features. The decoder is a fully-connected neural network with

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:7

two fully-connected layers. The auto-encoder is updated as:

z
t
i = GRU

(
z

t−1
i , x

t
i

)
(1)

x̂
t
i = Dθ

(
z

t
i

)
(2)

where the Dθ in Equation (2) represents the decoder network and θ is the weight of it.
The standard method to train an auto-encoder is to minimize the reconstruction error Le be-

tween x t
i and x̂

t
i .

Le = ‖xt
i − x̂

t
i ‖

2

2
(3)

If the trajectories of two drivers exhibit similar original driving features x , the representation
features z of them that are generated from the encoder should be similar. Therefore, the vehicle-
vehicle peer dependency can be integrated into the loss function. The peer dependency can be
modeled as a regularizer Lr .

Lr = s
t
i, j · ‖zt

i − z
t
j ‖

2

2
(4)

st
i, j = cos

(
x

t
i , x

t
j

)
(5)

where st
i, j in Equation (4) is the cosine similarity between the original driving feature vectors x t

i

and x t
j that are generated from driver di and driver dj during time window t , which is calculated

by Equation (5). The zt
i and zt

j are the representation features of x t
i and x t

j during time window t .
To incorporate the peer dependency, the loss function L is defined as:

L = arg min
∑
t ∈T

��
�

∑
di ∈D

Le + α ·
∑

dj ∈D,di�dj

Lr
��
�

(6)

where α is the hyperparameter to control the regularizer Lr . The di and dj are any two drivers in
the driver set D. The regularizer Lr is used to guide the training of the auto-encoder.

3.2.3 Driving Maneuver Anomaly Detection. Instead of training a multiclass classifier using la-
beled normal and anomalous data by supervised learning, we leverage deep auto-encoder to train
a one class classifier. One class classifier is an unsupervised learning process and has been widely
used in the state of the arts for anomaly detection [20, 21]. We use one class classifier because it
is not easy to collect, predefine and manually label various types of anomalies to train a super-
vised muilticlass classifier to detect different types of anomalies. More importantly, if any new
anomalies occur in the future, the anomalies need to be redefined and the classifier needs to be
retained. By using unsupervised one class classifier, we address the above problems. During the
training phase, the deep auto-encoder model is trained only on the normal driving data. During
the inference phase, the anomalies can be detected as long as the model memorized the feature
of normal data well. That is because anomalies cannot be reconstructed accurately by the model
trained only on normal data [22–24]. As shown in Figure 4, we leverage the reconstruction error
Le as the criterion to detect the anomalies.

During the inference phase, the model is expected to produce higher reconstruction error for
the driving anomalies than the normal ones. The detection principle is shown as follows:

x =

{
Normal Input , i f Le (x , x̂) < τ
Anomalies, Otherwise

(7)

where τ is the largest reconstruction error of normal data. It is predefined for online inference
[20, 21]. During inference, given a sample input x , if the reconstruction error Le between input
vector x and its reconstructed vector x̂ is lower than the threshold, it indicates that the well-trained

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

37:8 M. Liu et al.

model can reconstruct the input accurately. The input x will be considered as a normal driving
maneuver. Otherwise, the input x will be detected as an anomalous driving maneuver.

3.3 Geographical Partitioning for Anomaly Detection

In this work, we propose to develop the driving anomaly detection model in a geo-distributed way.
We first partition a city into several sub-regions to get stronger spatial peer dependency, and then
develop a specific model for each sub-region. The challenge here is how to partition the region
to the full extent of spatial peer dependency. To tackle the challenge, we develop a geographical
region partition algorithm. The design objective is to improve the accuracy of driving maneuver
anomaly detection in each sub-region. We extend the vehicle-vehicle dependency to the road-road
dependency. Three principles are considered in the partition algorithm. (1) The road segments with
stronger correlations should be partitioned into the same sub-region. (2) The road segments with
weaker correlations should be partitioned into different sub-regions. (3) The road segments that
are partitioned into the same sub-region should be geographically connected.

3.3.1 Problem Formulation. We represent the road network of a city as a graph G = (V ,E),
where V = (v1,v2, . . . ,vn) represents all road segments, and E = {e (vm ,vn)}vm,vn ∈V describes
the relationships among these road segments. If two road segments are geographically connected,
there will be an edge connecting these two vertices. The weight of an edge,w (vm ,vn) of e (vm ,vn),
qualifies the correlation between two vertices vm and vn . We extend the vehicle-vehicle depen-
dency to road-road dependency to get the correlation between two road segments. The similarity
of driving maneuvers that happened on two road segments is used to approximate the correlation
between them. We formulate this similarity by Equation (8).

w (vm ,vn) =
∑
t ∈T

1

K t
mK t

n

∑
di ∈Dm,dj ∈Dn

st
di ,dj

‖zt
di
− z

t
dj
‖2

2

(8)

where T represents all time windows, vm and vn denote two road segments, K t
m and K t

n represent
the number of drivers on these two road segments at time window t , Dm and Dn are two sets of
drivers on these two road segments at time t , st

di ,dj
is the similarity of original driving maneuvers

between driver di and driver dj at time t . st
di ,dj

is acquired by Equation (5), its value range is

between 0 to 1. The higher the similarity, the higher the st
di ,dj

. The di is the driver on road segment

vm and the dj is the driver on road segment vn . The zt
di

and zt
dj

are the representation features of

the driving maneuvers that are generated from the encoder for driver di and dj at time t . If the

original driving maneuvers (x) of two drivers are similar, the st
di ,dj

is higher, and the ‖zt
di
− zt

dj
‖2

2

is lower, the ratio of them is higher. At each time window, we calculate this ratio from all of driver
pairs on the two road segments vm and vn and get the average ratio of all pairs. We use multiple
time windows to do the experiments and use the average value from these time windows as the
correlation of these two road segments. The underlying rationale for the Equation (8) is that two
road segments have strong correlation when the original driving maneuvers (x) that happened on
these two road segments are similar and their representation features (z) are also similar. A higher
w (vm ,vn) means a higher correlation between the road segments vm and vn .

Based on Equation (8), we can obtain the weight of each edge in G. The objective of graph
partitioning is to divide vertices vx ∈ V into k subsets V1, V2, . . . , Vk . Each subset Vi corresponds
to a set of the road segments that are partitioned into the same sub-region. According to the
above partition principles, the spatial correlation within one subset Vi should be strong, and the
spatial correlation among different sub-regions (Vi and Vk) should be weak. We formulate it as an

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:9

optimization problem. Its objective is shown as follows:

max
1

M

∑
vm,vn ∈Vi

w (vm ,vn) − 1

N

∑
vm ∈Vi ,vl ∈Vk

w (vm ,vl),

vm � vn � vl ,Vi � Vk

(9)

where Vi and Vk are two vertex subsets in the graph G = (V ,E), vertex vm and vn belong to the
same subset Vi , vl is a vertex in subset Vk . w (vm ,vn) is the weight of edge e (vm ,vn), w (vm ,vl) is
the weight of edge e (vm ,vl). The edge e (vm ,vl) connects subset Vi and Vk . M is the total number
of edges within the same subset Vi and N is the total number of edges that connect subset Vi and
Vk . The first part of the objective is the average weight of edges within a subsetVi , the second part
is the average weight of edges that connect two subsets Vi and Vk . The objective is to maximize
the average weight difference within a subset and among different subsets.

3.3.2 Normalized Cut Algorithm. Graph partitioning is proved to be an NP-hard problem
[25–27]. Partitioning the graph into k = 2 parts is already an NP-hard problem. Solutions are gen-
erally derived using heuristics algorithms. Spectral clustering is one of the most common graph
partitioning methods by grouping graph vertices. MinCut, RatioCut, and Ncut are three common
spectral clustering algorithms. MinCut tries to find the minimum weight of edges that connect
different sub-graphs. But in many cases, MinCut simply separates a vertex in the graph from the
rest of the vertices, which is not what we want. A reasonable solution should consider that there
are as many vertices as possible in each sub-graph. RatioCut and Ncut were proposed to solve the
limitation of MinCut. In RatioCut, the size of a sub-graph is measured by the number of vertices
in this sub-graph, while in Ncut the size of a sub-graph is measured by the weights of edges in
this sub-graph. Since maximizing the number of vertices in each sub-graph does not necessarily
mean the total weights of this sub-graph is large, cutting the graph based on the weights is more in
line with our goal. Ncut is a normalized spectral clustering algorithm, while RatioCut is an unnor-
malized one. In general, Ncut is better than RatioCut [28]. Hence, we leverage Ncut [29] to solve
our optimization problem. The normalized cut criterion measures the total similarity within each
subset of the graph and the total dissimilarity among different subsets of the graph.

It is important to construct a similarity function among different vertices when using Ncut. The
vertices which are defined as “similar” by the similarity function should be closely related in the
application. In our scenario, the correlation between any two vertices does not only depend on how
similar these two vertices are. It first depends on the physical geographical connection. Because
vertices are the road segments. The two road segments that are supposed to be divided into the
same sub-region should be at first connected with each other. We use the correlation function
(Equation (8)) as the similarity function of vertices. Suppose the vertex setV and edge set E in the
graph G = (V ,E) can be partitioned into two subsets Vi and Vk , Vi ∪ Vk = V , Vi ∩ Vk = ∅ by
removing the edges that connect these two subsets. The degree of similarity between these two
parts is defined as cut (Vi ,Vk). It is the total weights of the edges that connect these two subsets.

cut (Vi ,Vk) =
∑

vi ∈Vi ,vk ∈Vk

w (vm ,vl) (10)

where vm is the vertex in subset Vi , vl is the vertex in subset Vk . Finding the minimum cuts is the
objective of graph partitioning. It is designed by considering both the total disassociation (Ncut)
between two subsets and the total association (Nassoc) within each subset. The Ncut and Nassoc
are defined as follows:

Ncut (Vi ,Vk) =
cut (Vi ,Vk)

cut (Vi ,V)
+
cut (Vi ,Vk)

cut (Vk ,V)
(11)

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

37:10 M. Liu et al.

Nassoc (Vi ,Vk) =
cut (Vi ,Vi)

cut (Vi ,V)
+
cut (Vk ,Vk)

cut (Vk ,V)
(12)

Importantly, the Ncut and Nassoc are closely related to each other, it can be inferred that:

Ncut (Vi ,Vk) =
cut (Vi ,Vk)

cut (Vi ,V)
+
cut (Vi ,Vk)

cut (Vk ,V)

=
cut (Vi ,V) − cut (Vi ,Vi)

cut (Vi ,V)
+
cut (Vk ,V) − cut (Vk ,Vk)

cut (Vi ,V)

= 2 − cut (Vi ,Vi)

cut (Vi ,V)
+
cut (Vk ,Vk)

cut (Vk ,V)

= 2 − Nassoc (Vi ,Vk)

(13)

So minimizing the dissociation (Ncut) between the sub-graphs and maximizing the association
(Nassoc) within each sub-graph can be reached simultaneously.

The solution can be approximated as follows:

(1) Build a weighted graph G = (V ,E,w) from the road network, compute the weight of each
edge according to Equation (8).

(2) Get the diagonal matrix D of the graph. The diagonal value is di =
∑

j w (i, j). Then get the
symmetrical matrixW of the graph withW (i, j) = wi j .

(3) Solve the equivalent eigenvalue system (D−W)y = λDy for eigenvectors, obtain the second
smallest eigenvalue.

(4) Use the eigenvector with the second smallest eigenvalue to bipartition the graph.
(5) Recursively partition the subgraphs until the desired number of clusters is reached.

3.4 Sub-Region Model and In-Situ Updating

The subsets partitioned by our Ncut are the sub-regions in the road network. We then train a
specific detection model for each sub-region by using the vehicle trajectories that are just collected
from this sub-region and perform in-situ updating of these models in each sub-region periodically.

3.4.1 Model Training and Inference for Sub-Regions. The models for the sub-regions need to be
trained by using the driving data collected from each sub-region. First, we map the data in the
dataset into different sub-regions. To implement this, we add the <RoadID> attribute to every
sample of the GPS data. By grouping the GPS data with the same RoadID value, the data will be
mapped into different sub-regions. Besides, we want to find the drivers with driving behaviors in
a set of consecutive time windows to train the model, so we filter the drivers that do not meet the
requirements. The number of sub-regions k to be partitioned is a parameter of Ncut algorithm. We
try different values of k and find the one with the best performance. Since we divide the whole city
into several sub-regions, the driving maneuvers that happened within each sub-region become the
peer dependencies when training the models. The models trained using the driving data within
each sub-region learn the distribution of normal driving maneuver in corresponding sub-regions.
The workflow of models for sub-regions is the same as the base model we introduced in 3.2. After
training, we use the threshold of reconstruction error of these models to classify the driving ma-
neuvers. The sub-region models are trained with different subsets of the data, the reconstruction
error threshold for these models are not exactly the same.

3.4.2 In-Situ Updating of the Sub-Region Models. To improve the trustworthiness of the geo-
distributed driving maneuver anomaly detection system, we will perform incremental learning
to update all the driving maneuver detection models in-situ. The models will be updated offline
after each server collects a reasonable amount of data or simply after a fixed time period T . In

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:11

our current implementation,T is set to 25 time windows, corresponding to 54 minutes. We update
the models twice in our implementation. Each server uses the data which detects as the normal
driving data by itself to update its driving maneuver detection model.

4 IMPLEMENTATION

Deep Learning Models. GeoDMA is implemented on Pytorch framework [14]. The encoder con-
tains one fully-connected layer and one GRU layer. The fully-connected layer has 40 neurons. Each
GRU cell has 20 neurons. The decoder is consisted of two fully-connected layers, which has 40 and
162 neurons in the first and second layer. The activation function is sigmoid function. The perfor-
mance comparison of different representation sizes can be found in Section 5.5. Besides, we use
SGD optimizer to optimize our models, as it has shown good performance in modeling sequential
data.

The learning rate is set to be 0.1. The batch size is 128. The number of epochs is 500. The α
in Equation (6) is 0.01. The models are trained on Alianware Aurora R7, which contains one Intel
Core i5 8400 CPU (6-core) and one NVIDIA GeForce GTX 1070 GPU (8GB memory). Sklearn python
package is used to implement the evaluation metrics.

Graph Partitioning. It is non-trivial to construct a graph based on the road network for a big
city. To implement it, the road network information is needed. We get the GEOJSON file of road
network from OpenStreetMap [30], which is a kind of file format for representing geodata. After
parsing the file, there are 43 types of road, including 138,155 road segments. We visualize the road
information and filter the road segments that do not contain any driving data, such as pedestrian
way, cycle way, and so on. There are many road segments that only contain several pair of coor-
dinates, which indicates these roads are short. We first combine these short road segments into
longer ones and then construct the graph using the longer road segments. We assign a RoadID to
each road and find out the connected roads by comparing coordinates. After getting the geograph-
ical connection of each road, the graphG = (V ,E) can be constructed and the weight of each edge
can be computed. Finally, we implement Ncut by using Sklearn package to partition the graph.

5 EVALUATION

We conduct a variety of experiments to evaluate the performance of GeoDMA, including overall
performance, performance under different scenarios, effectiveness of region partitioning, in-situ
model updating, and execution efficiency.

5.1 Experiment Setting

We compare the performance of GeoDMA with two baselines over a large vehicle GPS trajectories
dataset. We use 80% of the data to do training, and 20% to do testing [31–33]. We set the number
of sub-regions to 4, the size of the representation feature to 20. We use these settings by default in
the following experiments. In Section 5.5, we also conduct experiments to set these parameters.

5.1.1 Performance Metrics. We use F1 Score [34] and AUC to do the performance evaluation.

5.1.2 Baselines. We compare the performance of GeoDMA with two baselines.

• Centralized Model. The centralized model is a simple version of GeoDMA. It uses all train-
ing data to train a general model, without geographical partitioning. The general model is
based on an auto-encoder that takes both temporal dependency and peer dependency into
account.
• Single-User Model. We implement a similar version of the latest personalized driving

anomaly system pBEAM [6] based on deep auto-encoder architecture. The single-user model

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

37:12 M. Liu et al.

is trained using the driving data that is collected from each individual driver without con-
sidering peer dependency and geographical partitioning.

5.2 Dataset and Data Processing

We conduct data-driven evaluation on a real-world dataset, T-Drive [15, 16]. The data format in
the dataset is (Driver ID d , Date Time t , Longitude λ, Latitude φ). We first use a map matching
algorithm [35] to map the GPS locations to corresponding locations on the road network. We
then interpolate the missing data after map matching. We next pre-process the data, calculate the
driving speed and direction of the vehicles and simulate anomalous data for evaluation.

Map Matching. The T-Drive dataset includes the GPS trajectories collected from 10,357 drivers.
In the dataset, its sampling rate of trajectories is uneven, the average sampling interval is about
177 seconds with a distance of about 623 meters. When the sampling interval is large, there are
only a few data samples during their corresponding time windows. That is not good to derive
the driving features. Therefore, it may not fully show the driving maneuvers of drivers during
these time windows. In this paper, we leverage a map matching algorithm to solve this drawback.
The map matching algorithm maps the GPS trajectories to the road network [35, 36]. After map
matching, the data can be augmented and is much more dense than the original data. The average
sampling rate is about 9 seconds. Practically, we apply a standard map matching algorithm based
on Hidden Markov Model [35] to map the driving trajectories in T-Drive dataset onto the road
network. Map matching algorithm is implemented on Java platform.

Data Interpolation. After map matching, we find some pieces of data do not have the times-
tamp attribute. To solve this problem, We use an interpolation method to fill up the lost timestamps.
It assumes that all the drivers are driving with a constant speed between two consecutive times-
tamps. This assumption is in line with normal driving maneuvers. For example, point A, B, C, D,
E are five samples on a route, only A and E have time values. We first calculate the average speed

vAE of the vehicle from A to E, it is vAE =
dAE

tE−tA
, where dAE is the driving distance from A to E.

We assume the driver drives in a constant speed, so tB = tA + dAB

vAE
. Thus, the time information of

all the samples can be got. And all the drivers are driving in a constant speed most of the time.
Therefore, we assume all the driving maneuvers derived from the dataset after map matching and
data interpolation are normal.

Data Pre-processing. To make the data in the dataset closer to the normal driving data, we
filter the bad data from the dataset. After filtering, there are 504 drivers left in the dataset. The
driving time of each driver is 404 minutes. We then use a sliding time window to construct the
two driving state transition graphs. The default size of sliding time window is 30 minutes. For
example, the first time window is 0-30 minutes, the second one is 1-31 minutes, the third one is
2-32 minutes, and so on. The driving state transition graph of drivers during each time window are
the inputs to anomaly detection models. Since the total driving time of each driver is 404 minutes,
we divide it into 375 sliding time windows. Each driver generates one driving feature vector during
each window. The total sample size of normal data is 189,000.

Driving Speed and Direction. In the T-Drive dataset, given two data samples (d1, t1, λ1, φ1)
and (d1, t2, λ2, φ2), the driving distance D1,2 of driver d1 from t1 to t2 can be calculated by [37]:

D1,2 = atan2
��
�

√
sin2

(
Δφ

2

)
+ cosφ1 · cosφ2 · sin2

(
Δλ

2

)
,

√
1 − sin2

(
Δλ

2

)
− cosλ1 · cosλ2 · sin2

(
Δλ

2

)
��
�
· 2R

(14)

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:13

Table 2. Data Distribution of Normal Data and Anomalous Data

Value Normal
Anomaly 1

acc (1, 1)

Anomaly 2

angle (1, 1)

Anomaly 3

acc (0.2, 0.04)

angle (0.2, 0.04)

Acceleration

(m/s2)

<−0.5 21.5% 17.0% 21.5% 18.8%

[−0.5, 0.5] 57.3% 19.5% 57.3% 52.3%

>0.5 21.2% 63.5% 21.2% 28.9%

Bearing Angle

(radian)

<−1 8.1% 8.1% 7.1% 13.5%

[−1, 1] 84.3% 84.3% 43.4% 68.9%

>1 7.6% 7.6% 49.5% 17.6%

where Δφ = φ2 − φ1 is the difference between latitudes, Δλ = λ2 − λ1 is the difference between
longitudes, and R is the radius of the earth. Then we can get the average driving speed from t1 to

t2 by v1,2 =
D1,2

t2−t1
. Similarly, the driving speed v2,3 from t2 to t3 can be acquired. By comparing the

value of v1,2 and v2,3, we can know the driver is accelerating, decelerating or driving in a constant
speed. The bearing radian θ1,2 of driver d1 from t1 to t2 can be calculated by [37]:

θ1,2 = atan2(sinΔλ · cosφ2, cosφ1 · sinφ2 − sinφ1 · cosφ2 · cosΔλ) (15)

By comparing θ1,2 and θ2,3 between two consecutive timestamps, we can obtain the bearing
angle of the driver, i.e., bearing towards left, bearing towards right, or driving straight.

Driving Maneuver Anomaly Data. We need anomalous driving maneuvers to test the per-
formance of our system. Since it is dangerous to collect anomalous driving data from real world,
we borrow the idea from pBEAM [6] to simulate the anomalies based on the real-world data to
evaluate the system. Three kinds of anomalies are simulated as follows:

• Anomaly 1: For aggressive drivers, they usually have irregular acceleration or deceleration
[8]. This is one of the typical anomalies in real world. To simulate this scenario, we add
Gaussian noise (mean 1.0, variance 1.0) to the acceleration of our normal test data. The unit
of acceleration ism/s2.
• Anomaly 2: When the driver is sleepy or distracted, the driving trajectories may show un-

expected bearing angles [7]. We add Gaussian noise (mean 1.0, variance 1.0) to the bearing
angle of our normal test data to simulate this scenario. The unit of bearing angle is radian.
• Anomaly 3: For DUI (driving under the influence) or DWI (driving while intoxi-

cated/driving while impaired), both the acceleration and the bearing angle can become
abnormal [38]. To simulate this scenario, we add Gaussian noise (mean 0.2, variance 0.04)
to both acceleration and bearing angle. The mean and variance are set to a smaller value
than the previous two cases because there are changes in both acceleration and bearing
angle.

Table 2 shows the data distribution of normal data and the generated anomalous data. We use
0.5 m/s2 as the threshold to define the acceleration of a vehicle. If the acceleration of the vehicle
is larger than 0.5 m/s2, we define the vehicle is accelerating. If it is smaller than −0.5 m/s2, we
define it is decelerating. Otherwise, it is going at a constant speed. Similarly, we use 1 radian and
−1 radian as the threshold to define if a vehicle is turning right, turning left, or going straight. In
most of the experiments, we set the ratio of normal and abnormal test data as 1:1. Table 4 shows
the experimental result of changing this ratio.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

37:14 M. Liu et al.

Fig. 5. Overall performance comparison.

5.3 Overall Performance

For the centralized model, we use the driving data of all 504 drivers to train it. In GeoDMA, we
divide drivers into four sub-regions based on their GPS trajectories. But most of the drivers do
not drive in the same sub-region all the time. To be consistent with the centralized model, we
filter the drivers in each sub-region to find the drivers that drive in the same sub-region during all
the 375 sliding windows. After filtering, there are 33, 24, 10, and 9 drivers left in each sub-region,
respectively. We train a model for each sub-region by using the filtered data. We calculate the
average AUC and F1 score of four region-based models. For the single-user model, we train 76
different models for these 76 drivers and calculate the average AUC and F1 score of these models.
Figure 5 depicts the performance of GeoDMA and two baselines.

The experiment results show that the AUC of centralized model achieves 0.836, 0.881, and 0.894
for the three generated anomalies. The corresponding F1 score is 0.828, 0.868, and 0.881. It achieves
up to 8.5% higher accuracy than the single-user model. The reason for such an improvement is that
we consider the vehicle-vehicle peer dependency in the centralized model. Moreover, the AUC
of GeoDMA achieves 0.853, 0.895, and 0.907 for the three generated anomalies, respectively. The
corresponding F1 score is 0.846, 0.886, and 0.901. It further improves the accuracy of the centralized
model by up to 2.2%.

In all anomalous scenarios, GeoDMA outperforms the centralized model. This is because
GeoDMA considers the region partitioning. The driving features exist common pattern in a small
region across the vehicles due to similar contextual environments. Whereas the centralized model
is a general model and is trained for the whole city, it cannot take the local contextual features into
account. We also found basically the performance of all the systems on anomaly 2 is better than
anomaly 1. The performance on anomaly 3 is almost the same as anomaly 2. This demonstrates
the model is more sensitive to anomalous bearing angles than anomalous speeds.

5.4 Performance under Different Scenarios

We evaluate the performance of GeoDMA in different sub-regions, with different amounts of
anomalous data. We also analyze the performance of GeoDMA along with the time and among
different drivers.

Table 3 depicts the performance comparison of GeoDMA with two baselines. Among these four
regions, the model for region 4 performs the best; the performance of the other three region models
under the the same accuracy metric do not show much difference. The model for region 4 achieves
up to 10.2% and 6.0% higher accuracy than the single-user model and the centralized model on
average under F1 score. It also achieves up to 11.5% and 6.6% higher accuracy than the single-user
model and centralized model on average under AUC. More importantly, almost all of these four
models achieve better performance than the single-user model and centralized model under the

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:15

Table 3. Performance Comparison of Different Models on Real-World Data with Simulated Anomalies

Model Anomaly 1 Anomaly 2 Anomaly 3

AUC

Single-User 0.804 0.874 0.886

Centralized 0.836 0.881 0.894

GeoDMA
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

0.842 0.841 0.841 0.886 0.9 0.902 0.857 0.921 0.906 0.902 0.888 0.93

F1

Single-User 0.792 0.846 0.857

Centralized 0.828 0.868 0.881

GeoDMA
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

0.837 0.835 0.83 0.883 0.891 0.892 0.844 0.916 0.911 0.892 0.874 0.925

Table 4. Performance Comparison of Different Ratios of the

Normal Data to the Anomalous Data in Test Data

Ratio Anomaly 1 Anomaly 2 Anomaly 3

AUC

1:1 0.853 0.895 0.907

3:2 0.854 0.894 0.908

3:1 0.852 0.89 0.908

F1 Score

1:1 0.846 0.886 0.901

3:2 0.865 0.89 0.899

3:1 0.881 0.893 0.899

same evaluation metric on the three anomalies except the model for region 3. But the average
performance of these models is still better than the single-user model and the centralized model
as we see from Figure 5. The experiment results demonstrate that it is reasonable to divide a big
city into multiple sub-regions and develop multiple region models.

5.4.1 Different Ratio of Normal Data to the Anomalous Data. Table 4 shows the performance
of GeoDMA when we change the ratio of normal and anomalous test data. For all of the three
anomalies under AUC, the performance is basically the same when we change the ratio. The per-
formance under F1 score on anomaly 2 and anomaly 3 do not change much. The performance un-
der F1 score on anomaly 1 becomes a little higher when the anomalous test data becomes smaller.
This experiment shows that the performance of our system is robust and suitable to the real-world
scenarios.

5.4.2 Performance Analysis from Time Perspective. We further investigate the performance of
GeoDMA from a time perspective. For the construction of state transition vectors, we set the length
of a sliding window as 30 minutes. The driving maneuvers of the drivers may change over differ-
ent time windows. We evaluate the performance of drivers over different time windows. In test
data, there are 75 time windows. Figure 6(a) presents the anomaly detection performance of all
drivers from a time perspective under four sub-regions. As shown in the figure, the F1 score of
anomaly detection is higher than 0.8 during most of the time windows. And we can see that the
F1 score of the model fluctuates slightly but is still stable during different time windows. For the
third region, from time window 35 to time window 60, its F1 score is lower than 0.8 but still
higher than 0.7. This experiment demonstrates that GeoDMA has good performance along with
time.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

37:16 M. Liu et al.

Fig. 6. The performance of GeoDMA along with time and for different drivers.

Fig. 7. Performance of the different number of sub-regions.

5.4.3 Performance Analysis from Driver Perspective. We analyze the performance of drivers in
each sub-region from a space perspective. Each sub-region has a different driver set. Figure 6(b) de-
picts the cumulative probability of F1 score for the drivers in the four sub-regions. The cumulative
probability of drivers achieving a certain F1 score in the four sub-regions has a similar trend. On
average, only 15.2% of the drivers have an F1 score lower than 0.73. The F1 score of 66.7% drivers
is higher than 0.79, the F1 score of 44.4% drivers is higher than 0.90. It proves that GeoDMA can
provide high accuracy for almost all drivers. Moreover, the region models are robust because they
show a similar trend in all sub-regions.

5.5 Parameters Settings of GeoDMA

We further conduct experiments to set two important parameters in GeoDMA, i.e., the number of
sub-regions, the dimension size of hidden representation feature vector.

5.5.1 The Number of Sub-Regions. As introduced in Section 3, we use our customized Ncut
algorithm to partition a city into multiple sub-regions. However, the Ncut algorithm cannot decide
the optimal number of sub-regions automatically. The number needs to be tuned based on different
applications. We explore this number from 2 to 5 to find the optimal one. For each number, we
conduct experiments over the whole dataset to evaluate driving anomaly detection accuracy.

Figure 7 presents the performance comparison under different numbers of sub-regions. For each
case, we use the average AUC and F1 score of all sub-regions as its performance. Figure 7 shows
that both AUC and F1 score increase first and then degrade on all the three anomalies. The number

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:17

of sub-region parameter has a great influence on the system. For example, if the number is 2,
the partition result has a little difference with original road network. If GeoDMA applies such a
partition, it may have similar performance with the centralized model, i.e., 0.831 v.s. 0.836 in F1
score.

When the number changes from 2 to 4, the performance increases. The reason is that the more
sub-regions, the better the sub-region models extract peer dependency. However, based on our
current dataset, if the number of sub-regions is too big, there will be few data belonging to the
same sub-region, which may cause the model overfitting because of insufficient data. When the
number is 5, we notice that the performance degrades much. We dig into this case and find that
two of these five region models do not perform very well and influence the average performance of
the system. Under the setting of our current dataset, GeoDMA performs the best when we partition
the city into four regions. However, if we can get enough effective training data from this city, the
optimal number of divisions may be different. In addition, if the dataset is collected from another
city, the road network is different, the optimal partition result will be different. The larger the
dataset, the more parts the system will divide a city into.

5.5.2 The Size of the Representation Feature Vector. We also do experiments to find out the
optimal size of the representation feature. We set the representation feature size to 10, 20, 30, and
40 to train the region models. For each feature size, we show the average performance of 4 region
models under AUC and F1 score. Here we use the Anomaly 1 to do the experiments. Figure 8 shows
that when the feature size is 20, the models perform the best in terms of both evaluation metrics.
Therefore, we set the representation feature size to 20 to train all the driving anomaly detection
models, including the single-user model and the centralized model.

5.6 In-Situ Model Updating of GeoDMA

The prior experiments of GeoDMA are done without model updating. GeoDMA updates the model
for each sub-region periodically in order to improve its performance. Each region model is updated
by using the data collected from the vehicles within its coverage. Due to the limited available data,
we update the models twice. Each time we use the data from 25 sliding windows to do incremental
training. The data for model updating is different from the initial training data in the dataset.
Figure 9 depicts the performance of GeoDMA under the settings without model updating (U 0),
updating once (U 1) and updating twice (U 2). It presents the average performance of the four sub-
region models. We find that after each update, the performance of the updated models is improved
on all anomalies under both AUC and F1 score.

5.7 Execution Efficiency of GeoDMA

A model for driving maneuver anomaly detection is required to be lightweight since the detected
anomalies should be sent to the nearby drivers or passengers as fast as possible to avoid possible
traffic. GeoDMA is lightweight and efficient. The size of GeoDMA auto-encoder is only 72.2 KB.
The model provides an inference result in each sliding window (1-minute step). It takes about
8.37 ms to execute one inference in one time window for one driver. The inference time is measured
on Alianware Aurora R7 (one Intel Core i5 8400 CPU (6-core) and one NVIDIA GTX 1070 GPU)
without using its GPU. The driving data from other vehicles is no longer needed when doing
anomaly detection for a specific vehicle with a well-trained model.

6 RELATED WORK

Autoencoder-based Anomaly Detection. With the development of deep learning, some recent
solutions apply deep autoencoders for anomaly detection [22, 39–41]. RDA [22] demonstrates the

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

37:18 M. Liu et al.

Fig. 8. Different representation sizes. Fig. 9. GeoDMA with or without model updating.

effectiveness of deep autoencoder-based anomaly detection on image dataset. MemAE [40] uses
deep autoencoder for both image and video anomaly detection. [41] leverage deep autoencoder
for video anomaly detection. DAGMM [39] shows the effectiveness of deep autoencoder-based
anomaly detection model on network intrusion detection, thyroid cancer analysis and arrhythmia
analysis. In this paper, we apply deep autoencoder for anomaly driving maneuver detection.

Driving Anomaly Detection. Smartphone-based methods have been developed by commer-
cial companies, such as Google and Uber, to detect anomalous driving maneuvers [4, 5, 42–44].
CarSafe [4] detects drowsy and distracted drivers using cameras on smartphones. DriveSafe [5]
uses the rear camera, the microphone, the inertial sensors, and the GPS of the smartphones to
assess if a driver is drowsy or distracted. The camera-based methods are hard to achieve real-time
performance. SenSpeed [44] utilizes the accelerometer and gyroscope of smartphones to acquire
the instant vehicle speed. However, this solution assumes the alignment between the vehicle’s co-
ordinate system and the smartphone’s coordinate system is fixed, which is hard to guarantee when
the vehicle is driving. [42, 43] use GPS data, and SafeDrive [18] leverages the data from On-Board
Diagnostics to identify driving anomalies. However, they rely on the sensor readings of a single
driver, and the temporal and spatial correlations of the driving maneuvers from multiple drivers
are ignored. Deep learning shows its efficiency in anomaly detection [45–48]. In pBEAM [6], it
leverages unsupervised conditional adversarial RNN to train a single-user driving anomaly detec-
tion model. However, it ignores the peer dependency across vehicles. In this paper, we consider
the temporal correlation of driving maneuvers and peer dependency of driving maneuvers in our
driving anomaly detection model.

Driving Behavior Modeling. In the literature, there are also some crowdsensing works on
collecting data from multiple users for driving behavior modeling [11, 49–51]. Some of these stud-
ies process the data of individual vehicles independently, but the statistical correlations across
vehicles in those studies were ignored. Some studies group behaviors of drivers, but do not de-
tect driving maneuvers of each vehicle. Most of the driving behavior modeling methods are offline
analysis and assessment. PTARL [17] learns the representation of driving state transitions and uses
the learned representation features to assess the historical driving score of each driver. It focuses
on representation learning but not driving maneuver anomaly detection. However, GeoDMA is fo-
cused on real-time driving anomaly detection, which takes both individual driving maneuvers and
vehicle-vehicle peer dependency into account. Besides, the contextual information like weather,
traffic, and road condition in a small region tends to be similar.

Geographic Region Partition. The First Law of Geography proposed in 1970 [12] has been
applied in many applications, like city management, urban traffic control, and transportation sim-
ulations [25, 52–58]. Graph-based road network partition methods are commonly used for region
partitioning [25, 52, 59]. Following those solutions, we also leverage the road network graph to
perform geographical partitioning. However, the graph we defined is closely related to the driving
maneuver anomaly detection, e.g., we define the weight of edges based on the spatial correlation

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:19

of road segments. Our optimization objective is to maximize the spatial correlation in a sub-region
and minimize the spatial correlation between any two sub-regions.

7 DISCUSSION

Privacy Issues. During online driving anomaly detection, GeoDMA collects the GPS locations
from all the vehicles and uploads the locations to the corresponding edge servers. To protect user
privacy, we anonymize the user identification information by a code. We will not collect any private
and sensitive information from the users.

Static Geographical Partitioning. Due to the limited size of our current dataset, we perform
the geographical partition statically. To provide better services for users, it is more reasonable to
adjust the geographical partition dynamically as more new data is collected from the city. If the
geographical partition is formed dynamically, new models for new local regions will be trained
based on the new partition, using the data collected under new local regions. All historical data can
be used for training, as long as it follows the new geographical partitioning. The new models will
be trained offline. We still use the previous models to do online detection, while we are training the
new models. Once the new models are well trained, they will be deployed for detection. Transfer
learning that leverages the old models to train the new models will be explored to shorten the
training time of new models in future work.

Model Generalization. Our models can be used to do anomaly detection for different scenarios
(i.e., sparse, or dense traffic flows) if the models are trained with sufficient data collected from those
scenarios. Moreover, we believe the detection accuracy can be further improved if the models
are developed depending on different scenarios. As more and more GPS locations are collected
from the users, the models in the same area can be trained in a fine-grained way. We can train
different models for workdays and weekends. To be more specific, during the same day, we can
train different models for different time periods, e.g., a model for peak hours, a model for off-peak
hours in the daytime, and a model for the night.

8 CONCLUSION

This paper presents GeoDMA, which leverages unsupervised deep auto-encoders and a geo-
distributed partitioning algorithm to develop a driving maneuver anomaly detection system. The
auto-encoder learns normal driving features from historical data by considering both temporal and
peer dependency. Our geo-distributed partitioning algorithm further divides a city into several sub-
regions. We then train a specific model for each sub-region to improve the detection accuracy in
each sub-region. Extensive experiments in a large-scale real-world vehicle GPS trajectory dataset
show that GeoDMA outperforms the baseline methods.

REFERENCES

[1] Miaomiao Liu and Wan Du. 2020. Geo-distributed driving maneuver anomaly detection. In Proceedings of the 7th ACM

International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. 310–311.

[2] NHTSA. ([n.d.]). 2018 Fatal Motor Vehicle Crashes: Overview. https://crashstats.nhtsa.dot.gov/Api/Public/

ViewPublication/812826.

[3] WHO. ([n.d.]). Global Status Report on Road Safety 2018. https://www.who.int/violence_injury_prevention/road_

safety_status/2018/en/.

[4] Chuang-Wen You, Nicholas D. Lane, Fanglin Chen, Rui Wang, Zhenyu Chen, Thomas J. Bao, Martha Montes-de Oca,

Yuting Cheng, Mu Lin, Lorenzo Torresani, et al. 2013. CarSafe app: Alerting drowsy and distracted drivers using dual

cameras on smartphones. In ACM MobiSys.

[5] Luis Bergasa and Roberto Arroyo. 2014. DriveSafe: An app for alerting inattentive drivers and scoring driving behav-

iors. In IEEE IV.

[6] Xingzhou Zhang, Mu Qiao, Liangkai Liu, Yunfei Xu, and Weisong Shi. 2019. Collaborative cloud-edge computation

for personalized driving behavior modeling. In ACM/IEEE SEC.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812826
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/

37:20 M. Liu et al.

[7] Sinan Kaplan, Mehmet Amac Guvensan, Ali Gokhan Yavuz, and Yasin Karalurt. 2015. Driver behavior analysis for

safe driving: A survey. IEEE Transactions on Intelligent Transportation Systems 16, 6 (2015), 3017–3032.

[8] Cian Ryan, Finbarr Murphy, and Martin Mullins. 2020. End-to-end autonomous driving risk analysis: A behavioural

anomaly detection approach. IEEE Transactions on Intelligent Transportation Systems (2020).

[9] Zhongyang Chen, Jiadi Yu, Yanmin Zhu, Yingying Chen, and Minglu Li. 2015. D 3: Abnormal driving behaviors de-

tection and identification using smartphone sensors. In 2015 12th Annual IEEE International Conference on Sensing,

Communication, and Networking (SECON’15). IEEE, 524–532.

[10] Lex Fridman, Daniel E. Brown, Michael Glazer, William Angell, Spencer Dodd, Benedikt Jenik, Jack Terwilliger,

Aleksandr Patsekin, Julia Kindelsberger, Li Ding, et al. 2019. MIT advanced vehicle technology study: Large-scale

naturalistic driving study of driver behavior and interaction with automation. IEEE Access 7 (2019), 102021–102038.

[11] Jin-Hyuk Hong, Ben Margines, and Anind K. Dey. 2014. A smartphone-based sensing platform to model aggressive

driving behaviors. In ACM SIGCHI.

[12] Waldo R. Tobler. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography

46 (1970), 234–240.

[13] Isam Mashhour Al Jawarneh, Paolo Bellavista, Antonio Corradi, Luca Foschini, and Rebecca Montanari. 2020. Locality-

preserving spatial partitioning for geo big data analytics in main memory frameworks. In GLOBECOM 2020-2020 IEEE

Global Communications Conference. IEEE, 1–6.

[14] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NeurIPS-W.

[15] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang. 2010. T-drive:

Driving directions based on taxi trajectories. In ACM SIGSPATIAL.

[16] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with knowledge from the physical world. In ACM

SIGKDD.

[17] Pengyang Wang, Yanjie Fu, Jiawei Zhang, Pengfei Wang, Yu Zheng, and Charu Aggarwal. 2018. You are how you

drive: Peer and temporal-aware representation learning for driving behavior analysis. In ACM SIGKDD.

[18] Mingming Zhang, Chao Chen, Tianyu Wo, Tao Xie, Md Zakirul Alam Bhuiyan, and Xuelian Lin. 2017. SafeDrive:

Online driving anomaly detection from large-scale vehicle data. IEEE Transactions on Industrial Informatics 13, 4 (2017),

2087–2096.

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recur-

rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

[20] Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, and Ehsan Adeli. 2018. Adversarially learned one-

class classifier for novelty detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

3379–3388.

[21] Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid, and Seung-Ik Lee. 2020. Old is gold: Redefining the adver-

sarially learned one-class classifier training paradigm. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 14183–14193.

[22] Chong Zhou and Randy C. Paffenroth. 2017. Anomaly detection with robust deep autoencoders. In ACM SIGKDD.

[23] Hongyong Wang, Xinjian Zhang, Su Yang, and Weishan Zhang. 2021. Video anomaly detection by the duality of

normality-granted optical flow. arXiv preprint arXiv:2105.04302 (2021).

[24] Mujtaba Asad, Jie Yang, Enmei Tu, Liming Chen, and Xiangjian He. 2021. Anomaly3D: Video anomaly detection based

on 3D-normality clusters. Journal of Visual Communication and Image Representation 75 (2021), 103047.

[25] Ying-Ying Ma, Yi-Chang Chiu, and Xiao-Guang Yang. 2009. Urban traffic signal control network automatic partition-

ing using Laplacian eigenvectors. In IEEE ITSC.

[26] Andreas Emil Feldmann and Luca Foschini. 2015. Balanced partitions of trees and applications. Algorithmica 71,

2 (2015), 354–376.

[27] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.

Vol. 174. Freeman San Francisco.

[28] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and Computing 17, 4 (2007), 395–416.

[29] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence 22, 8 (2000), 888–905.

[30] ([n.d.]). OpenStreetMap. https://www.openstreetmap.org.

[31] Xianzhong Ding, Wan Du, and Alberto Cerpa. 2019. Octopus: Deep reinforcement learning for holistic smart building

control. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and

Transportation. 326–335.

[32] Xianzhong Ding, Wan Du, and Alberto E. Cerpa. 2020. MB2C: Model-based deep reinforcement learning for multi-

zone building control. In Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings,

Cities, and Transportation. 50–59.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

https://www.openstreetmap.org

Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder 37:21

[33] Xianzhong Ding and Wan Du. 2022. DRLIC: Deep reinforcement learning for irrigation control. In ACM/IEEE IPSN.

[34] Miaomiao Liu, Xianzhong Ding, and Wan Du. 2020. Continuous, real-time object detection on mobile devices without

offloading. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS’20). IEEE, 976–986.

[35] Paul Newson and John Krumm. 2009. Hidden Markov map matching through noise and sparseness. In ACM SIGSPA-

TIAL.

[36] Zhihao Shen, Wan Du, Xi Zhao, and Jianhua Zou. 2020. DMM: Fast map matching for cellular data. In Proceedings of

the 26th Annual International Conference on Mobile Computing and Networking. 1–14.

[37] ([n.d.]). Geosphere. http://www.edwilliams.org/avform.htm#Dist.

[38] Jiangpeng Dai, Jin Teng, Xiaole Bai, Zhaohui Shen, and Dong Xuan. 2010. Mobile phone based drunk driving detection.

In 2010 4th International Conference on Pervasive Computing Technologies for Healthcare. IEEE, 1–8.

[39] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. 2018. Deep

autoencoding Gaussian mixture model for unsupervised anomaly detection. In ICLR.

[40] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh, and Anton van den

Hengel. 2019. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised

anomaly detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 1705–1714.

[41] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K. Roy-Chowdhury, and Larry S. Davis. 2016. Learning tem-

poral regularity in video sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

733–742.

[42] Apichon Witayangkurn, Teerayut Horanont, Yoshihide Sekimoto, and Ryosuke Shibasaki. 2013. Anomalous event

detection on large-scale GPS data from mobile phones using hidden Markov model and cloud platform. In Proceedings

of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication. 1219–1228.

[43] Siqian Yang, Cheng Wang, Hongzi Zhu, and Changjun Jiang. 2019. APP: Augmented proactive perception for driv-

ing hazards with sparse GPS trace. In Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc

Networking and Computing. 21–30.

[44] Jiadi Yu, Hongzi Zhu, Haofu Han, Yingying Jennifer Chen, Jie Yang, Yanmin Zhu, Zhongyang Chen, Guangtao Xue,

and Minglu Li. 2015. Senspeed: Sensing driving conditions to estimate vehicle speed in urban environments. IEEE

Transactions on Mobile Computing 15, 1 (2015), 202–216.

[45] Vidyasagar Sadhu, Teruhisa Misu, and Dario Pompili. 2019. Deep multi-task learning for anomalous driving detection

using CAN bus scalar sensor data. arXiv preprint arXiv:1907.00749 (2019).

[46] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly detection: A survey. arXiv preprint

arXiv:1901.03407 (2019).

[47] Sarah M. Erfani, Mahsa Baktashmotlagh, Masud Moshtaghi, Vinh Nguyen, Christopher Leckie, James Bailey, and

Kotagiri Ramamohanarao. 2017. From shared subspaces to shared landmarks: A robust multi-source classification

approach. In AAAI.

[48] Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon. 2018. Ganomaly: Semi-supervised anomaly detection

via adversarial training. In ACCV.

[49] Abd-Elhamid M. Taha and Nidal Nasser. 2015. Utilizing CAN-bus and smartphones to enforce safe and responsible

driving. In IEEE ISCC.

[50] Tanushree Banerjee, Arijit Chowdhury, and Tapas Chakravarty. 2016. MyDrive: Drive behavior analytics method and

platform. In ACM WPA.

[51] Xiaoyu Zhu, Yifei Yuan, Xianbiao Hu, Yi-Chang Chiu, and Yu-Luen Ma. 2017. A Bayesian network model for con-

textual versus non-contextual driving behavior assessment. Transportation Research Part C: Emerging Technologies

81 (2017), 172–187.

[52] Yan Xu and Gary Tan. 2012. An offline road network partitioning solution in distributed transportation simulation.

In IEEE/ACM DS-RT.

[53] Yuxuan Ji and Nikolas Geroliminis. 2012. On the spatial partitioning of urban transportation networks. Transportation

Research Part B: Methodological 46, 10 (2012), 1639–1656.

[54] Jing Yuan, Yu Zheng, and Xing Xie. 2012. Discovering regions of different functions in a city using human mobility

and POIs. In ACM SIGKDD.

[55] Nicholas Jing Yuan, Yu Zheng, and Xing Xie. 2012. Segmentation of urban areas using road networks. MSR-TR-2012–65,

Tech. Rep. (2012).

[56] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing. 2011. Discovering spatio-temporal causal interactions in

traffic data streams. In ACM SIGKDD.

[57] Yanjie Fu, Pengyang Wang, Jiadi Du, Le Wu, and Xiaolin Li. 2019. Efficient region embedding with multi-view spatial

networks: A perspective of locality-constrained spatial autocorrelations. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 33. 906–913.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

http://www.edwilliams.org/avform.htm#Dist

37:22 M. Liu et al.

[58] Yunchao Zhang, Yanjie Fu, Pengyang Wang, Xiaolin Li, and Yu Zheng. 2019. Unifying inter-region autocorrelation

and intra-region structures for spatial embedding via collective adversarial learning. In ACM SIGKDD.

[59] Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul Sondag. 2007. Adaptive fastest path

computation on a road network: A traffic mining approach. In VLDB.

Received 27 December 2021; revised 27 June 2022; accepted 24 August 2022

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 37. Publication date: April 2023.

