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ABSTRACT
In orchards, tree-level localization of robots is critical for smart

agriculture applications like precision disease management and tar-

geted nutrient dispensing. However, prior solutions cannot provide

adequate accuracy. We develop our system, a fingerprinting-based

localization system that can provide tree-level accuracy with only

one LoRa gateway. We extract channel state information (CSI) mea-

sured over eight channels as the fingerprint. To avoid labor-intensive

site surveys for building and updating the fingerprint database, we

design a CSI Generative Model (CGM) that learns the relationship

between CSIs and their corresponding locations. The CGM is fine-

tuned using CSIs from static LoRa sensor nodes to build and update

the fingerprint database. Extensive experiments in two orchards vali-

date our system’s effectiveness in achieving tree-level localization

with minimal overhead and enhancing robot navigation accuracy.
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1 INTRODUCTION
In modern orchards, robots have become indispensable for execut-

ing precision agriculture practices, such as pruning, harvesting, and

spraying [1, 2]. These robots are tasked with focusing on individ-

ual trees for specific operations. For instance, conducting proactive

health assessments on individual trees facilitates timely interven-

tions that can prevent the spread of diseases [3]. To perform these
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functions, robots require the capability to accurately identify each

tree and navigate within orchards. Considering the spacing between

two adjacent trees is typically 4.9 m [4], achieving tree-level identifi-

cation necessitates localization accuracy finer than 4.9 m.

While tree-level localization is readily achievable in urban envi-

ronments [5, 6], achieving tree-level localization in orchards presents

significant challenges. Traditional methods for robot localization,

such as wheel encoders [7], SLAM (Simultaneous Localization and

Mapping)[8], and GPS (Global Positioning System)/INS (Inertial

Navigation System)[9], fall short in accurately identifying individual

trees. Specifically, wheel encoders are prone to slipping in muddy

conditions, compromising their reliability [10]. The SLAM sys-

tems face difficulties with variable lighting conditions, obstructions,

high infrastructure costs, high power requirements, and uneven ter-

rain [11, 12]. The GPS/INS systems, known for their robustness,

low cost, and energy efficiency, rely on GPS to provide precise

positioning that compensates for the inherent drift in inertial sen-

sors [9, 13]. However, GPS accuracy is notably compromised in

orchards due to signal obstruction by tree canopies [9, 14]. Our ex-

periments conducted in a pistachio orchard demonstrated an average

GPS localization error of 7.9m, which led to a navigation accuracy

of 9.1m using the state-of-the-art GPS/INS algorithm [9]. Conse-

quently, such level of accuracy renders traditional robot navigation

methods impractical in orchard environments.

Recent advancements in precision agriculture have seen the de-

ployment of long-range, low-power LoRa networks [15, 16] in or-

chards for many applications such as smart irrigation [17, 18] and

pest monitoring [19, 20]. This work explores the innovative use of

existing LoRa infrastructure to enable robot localization in orchards.

By equipping a robot with a LoRa node, it transmits packets to a

nearby LoRa gateway. This gateway then estimates the robot’s loca-

tion based on these packets and relays the calculated position back

to the robot. Moreover, by integrating LoRa-based localization with

inertial navigation systems, we can improve navigation accuracy.

Several algorithms for LoRa localization have been proposed [21–

24]. However, their application in orchards faces challenges: 1)

These algorithms require the reception of the same packet by mul-

tiple gateways for effective localization. In contrast to urban envi-

ronments, LoRa gateways in orchards are deployed more sparsely,

aimed at covering large areas at minimal costs. Consequently, at

most locations, the signal from a sensor node is likely to be received

by only a single gateway. 2) They assume Line-of-sight (LoS) signal

paths between nodes and gateways. In orchards, however, gateways

are mounted on high poles for broad coverage and nodes are installed

under canopies for environmental measurements. LoS paths barely

exist due to the blockage of tree canopies.
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Figure 1: The workflow of OrchLoc. The combination of pre-training and fine-tuning stages is termed the turbo-training scheme.

This paper introduces OrchLoc, a novel fingerprinting-based

LoRa localization system in orchards using a single LoRa gateway.

We propose a new fingerprint for LoRa localization, i.e., Channel

State Information (CSI), which is extracted from both the ampli-

tude and phase spectrum of signals received across eight channels

by a dual-antenna gateway. Distinct from Wi-Fi CSI fingerprinting

methods that separately utilize amplitude [25] or phase [26, 27] for

localization, we devise a location classifier with complex-valued

Fully-Connected (FC) blocks to process CSI measurements. Experi-

mental results reveal that our location classifier enhances amplitude-

only and phase-only methods in precision, with improvements of

20.3% and 46.7%, respectively.

However, OrchLoc encounters two challenges: the labor-intensive

site surveys in large orchards and the need for periodic updates to

counteract fingerprint aging. This paper highlights two key obser-

vations enabling efficient database construction and updates with

minimal overhead: 1) Media Homogeneity: Existing sensor nodes

deployed across orchards for precision agriculture are utilized to peri-

odically provide CSI fingerprints from their stationary locations. The

challenge arises in updating fingerprints for locations without sensor

nodes. Although distinct CSI patterns emerge across various loca-

tions, LoRa signals only traverse through three media: air, foliage,

and ground. Experiments show that shadowing effects from these

media are consistent across all locations. This consistency means

shadowing effects learned from locations with sensor nodes can be

applied to refresh fingerprints at locations lacking sensor nodes. 2)
Spatial Homogeneity: Modern orchards feature uniformly shaped

trees and systematic layouts, allowing for the even distribution of

LoRa gateways to ensure comprehensive coverage. This uniformity

permits the division of an orchard into distinct gateway coverage

areas, each with a consistent tree layout. Each gateway is responsi-

ble for maintaining its own fingerprint database. Our experimental

findings reveal a high similarity in CSI fingerprints across these

various areas. This similarity supports the practicality of utilizing

the database from one area to inform the databases of other areas.

Inspired by recent advancements in generative models [28], we

introduce a CSI Generative Model (CGM) designed to synthesize

CSI fingerprints based on location IDs. As depicted in Figure 1,

the CGM is central to our proposed turbo-training scheme, which

facilitates the construction and updating of fingerprint databases in

orchards. Initially, the CGM is pre-trained with fingerprints from a

reference area, selected for its Spatial Homogeneity—a characteris-

tic ensuring the representativeness of other areas. Subsequently, this

pre-trained CGM undergoes fine-tuning with data from sensor nodes

deployed in a new target area. This fine-tuning phase is crucial for

capturing local environmental features, significantly improving the

model’s adaptability to the specific conditions of the new area. We

conceptualize the CGM as a "CSI propagation model", leveraging

the Media Homogeneity to assert that the fine-tuned CGM can gen-

erate CSI data for locations devoid of sensor nodes. Through this

process, we can continuously refresh the classifier with generated

data, thereby circumventing the reliance on labor-intensive manual

measurements for data collection.

Our CGM, featuring a location-aware diffusion model (LoDM),

can generate CSI for each location. It contains a complex-valued U-

Net framework [29] and attention layers [30, 31] to effectively learn

the latent relationship between CSI data and location IDs. However,

feeding raw CSI data and location IDs directly into the LoDM could

constrain its modeling capabilities. This limitation arises because lo-

cation IDs do not provide detailed location-specific information, and

the utilization of low-dimensional CSI vectors could lead to overfit-

ting. To mitigate this issue, the CGM integrates specialized CSI and

location representers. A complex-valued auto-encoder-based CSI

representer converts the data into high-dimensional vectors, effec-

tively extracting latent features. The location representer computes

the proportions of foliage, air, and ground within the First Fresnel

Zone (FFZ). Combined with the communication distance and direc-

tion, our representer yields the FFZ vector. This vector offers a more

detailed, physically-informed, and comprehensive representation of

location compared to mere location IDs.

We collected CSI fingerprint database across seven rounds over

four weeks in one area, and gathered CSI data in ten areas across two

pistachio orchards. The experimental results show that our turbo-

training scheme consistently maintained average precision and recall
at 96.3% and 97.6%, respectively, over the four weeks. For the ten

areas, OrchLoc achieved an average precision and recall of 89.6%

and 91.8%, with a localization error of just 1.2 m. Furthermore,

substituting GPS with OrchLoc for robotic navigation in orchards,

employing the Neural-KF navigation algorithm [9], resulted in a

reduction of navigation errors by 61.3%.
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In summary, this paper makes the following contributions:

• We develop OrchLoc, an in-orchard fingerprinting-based lo-

calization system that achieves tree-level localization accu-

racy with a single LoRa gateway.

• We design CSI-based fingerprint and devise a complex-valued

FC block as a classifier for location estimation.

• Based on two observations in orchards, a turbo-training scheme

is developed, coupled with CGM, to enable efficient database

construction and updating.

• To generate high-quality CSI fingerprints, we customize CGM

by integrating a location-aware diffusion model, a CSI repre-

senter, and a FFZ-based location representer.

• Extensive experiments demonstrate the localization accuracy

and utility for robot navigation in orchards.

2 MOTIVATION
This work aims to provide tree identification and robot navigation

in orchards. A critical question is the impact of GPS accuracy on

the navigation performance of GPS/INS systems in orchards. Utiliz-

ing the public dataset [9], we simulate a robot’s movement across

farm terrains, covering a total trajectory length of 2.0 km. The ro-

bot is equipped with a Bosch BNO055 INS unit [32] for capturing

inertial data. Meanwhile, an OptiTrack 13W-P MoCa system [33]

records the robot’s initial positioning and continuous velocity to

establish trajectory groundtruth. To mirror GPS accuracy in orchard

scenarios—averaging 7.9 m as detailed in Section 7.4—we introduce

Gaussian noise with a mean of 7.9 m and a standard deviation of 1.0
into the real coordinates. We test two methods that merge GPS and

INS data to correct the drift of INS sensors, i.e., Extended Kalman

Filter (EKF) [13] and Neural-KF [9].

Figure 2 reveals that navigation errors—measured as the average

root-mean-square error (RMSE) between the predicted and actual

location trajectories—decrease to 11.6 m with EKF and 9.1 m with

Neural-KF. These substantial errors stem from the reliance on GPS

for accurate position corrections to counteract INS sensor drift. In

environments like orchards where GPS accuracy is significantly

diminished, the system’s capacity to amend INS drift is severely

compromised, resulting in considerable navigation errors. Given that

typical tree spacing of 4.9 m in orchards, these levels of error are

impractical for autonomous robot navigation. This paper introduces

an innovative approach that leverages an alternative to GPS for

sensor drift correction, aiming to enhance localization accuracy in

GPS-challenged environments.

3 LOCALIZATION USING ORCHLOC
We first introduce the CSI for LoRa signal, then devise a location

classifier that integrates complex-valued FC blocks to process the

complex-valued data, enabling CSI fingerprint-based localization.

3.1 CSI Fingerprint
3.1.1 Extracting CSI for LoRa. To extract stable CSI data for

LoRa, we incorporate several operations: de-chirping, Fast Fourier

Transform (FFT), preamble calibration, phase rotation compensation

for amplitude calculation, and utilization of the phase difference

between two antennas for phase estimation. Upon the reception

Figure 2: The robot navigation accuracy in orchards.

of a packet, the CSI (a complex number representing channel fre-

quency response) is obtained by comparing the amplitude and phase

spectrum of the packet preambles to those of a standard up-chirp.

Preambles are well-calibrated as [34–36], serving as a reliable basis

for the following calculation.

Amplitude: The process begins with de-chirping and applying

FFT to the preambles, expressed as 𝑌 (𝑓 ) = F[𝑟 (𝑡)], where a peak

is identifiable at the first frequency bin. The amplitude of CSI is

determined by the ratio of the peak height of the received preamble to

that of the standard up-chirp. To counteract the impact of FFT phase

rotation on peak height estimation, phase rotation at frequencies

𝑓 and 𝑓 − 𝐵𝑊 is compensated. This is achieved by optimizing the

summation of𝑌 (𝑓 ) ·𝑒 𝑗𝜙 and𝑌 (𝑓 −𝐵𝑊 ) over 𝜙 ∈ [0, 2𝜋], facilitating

an accurate estimation of the peak height.

Phase: We first calculate the phase of the peak from two antennas.

Then, the phase difference between the two antennas is derived to

obtain more stable phase data over time [34, 37].

These operations not only ensure the extraction of stable CSI

data but also minimize the potential interference impact from other

wireless systems operating within the same unlicensed frequency

band. Notably, we do not account for cell edge interference from

adjacent gateways, as in the US, adjacent LoRa gateways are config-

ured to operate on different frequency channels [38]. This regulation

prevents signal interference between neighboring gateways.

CSI Fingerprint x0: Unlike Wi-Fi, where a packet occupies

multiple channels, a LoRa packet is sent on only one channel each

time. Given a gateway operating across eight channels, nodes are

instructed to transmit eight packets, with each on a separate channel.

Thus, a fingerprint x0 is obtained with a dimension of 2×8, capturing

the frequency response across eight channels for both antennas.

Database: CSI fingerprints are collected at all 𝑀 = 64 locations

within a gateway coverage area. At each location, 160 packets are

collected. Each set of eight consecutive packets across the eight

channels forms a CSI vector, yielding 20 CSI vectors per location.

We also employ a common data augmentation technique [39] to pro-

duce 80 additional CSI vectors at each location by adding Gaussian

noise to the initial 20 CSI vectors. This noise was sampled from a

zero-mean Gaussian distribution. The standard deviation for each

dimension was set according to the standard deviation calculated

from the collected 20 CSI vectors.

3.1.2 Spatial Resolution. We employ the MUSIC algorithm [40]

and t-SNE [41] to illustrate the spatial resolution of CSI from physi-

cal and representation learning perspectives.

The MUSIC algorithm is used on the LoRa signal samples from

two antennas to assess the signal strength at various angles. Repeated

across eight channels, this yields spatial spectra for each location.
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Figure 3: Spatial spectra of two
adjacent locations in an area.

Figure 4: Representation of lo-
cations in an area using t-SNE.

Figure 3 shows distinct spatial spectra for two neighboring locations,

indicating different signal arrival angles at the gateway. This differ-

ence confirms the ability to distinguish two adjacent locations in

orchards using LoRa signals.

Furthermore, Figure 4 presents the results obtained by applying

t-SNE to the CSI fingerprints from all locations. Markers of different

colors or shapes represent distinct locations. The CSI data from the

same locations display a clustering effect, confirming the spatial

resolution of CSI fingerprints.

3.2 Complex-Valued Location Classifier
It is intuitive to flatten the CSI vector into a one-dimensional real-

valued vector. Then, traditional matching methods, such as the K-

Nearest Neighbors (KNN), can be applied for location classifica-

tion. However, the direct flattening might diminish the spatial or

structural features inherent to the CSI vector, and compromise the

inter-relations among vector elements. In contrast, we introduce the

complex-valued FC block to effectively integrate both amplitude

and phase information, thereby enhancing localization accuracy.

Complex-Valued FC Block: It consists of two real-valued neu-

rons, each processing the real and imaginary parts of input, denoted

by u and v, respectively. If input data is represented as c = u + 𝑖 · v,

the weight matrix as w = wu + 𝑖 ·wv, and the bias as b = bu + 𝑖 · bv,

then the output of the block is given by c′ = u′ + 𝑖 · v′. Here,

u′ = 𝜎 (Re (w · c + b)) and v′ = 𝜎 (Im (w · c + b)), where 𝜎 is the

nonlinear activation function such as Rectified Linear Unit (ReLU).
Our classifier consists of two complex-valued FC blocks and two

real-valued FC layers, each followed by a ReLU function. To bridge

complex-valued FC blocks and FC layers, the absolute value of

outputs from the second complex-valued block is computed as the

input for the first FC layer. Features from the second FC layer are

then directed into the third FC layer, equipped with 𝑀 neurons and

a softmax activation function.

3.3 Performance and Challenges
Over four weeks, we conducted seven rounds (𝑟1 to 𝑟7) of CSI

measurement in an area with 𝑀 = 64 locations. In each round,

we collect a fingerprint database for all locations, resulting in seven

distinct databases corresponding to different times: 𝑟1 (first day AM),

𝑟2 (first day PM), 𝑟3 (second day), 𝑟4 (third day), 𝑟5 (tenth day),

𝑟6 (seventeenth day), and 𝑟7 (twenty-fourth day). The fingerprint

measurement process needed around four hours in each round. The

environmental parameters observed in each data collection round

are documented in Table 1. The CSI fingerprint database from the

first round (𝑟1) was divided into training and testing sets in a 7 : 3

ratio. The location classifier, trained solely with the 𝑟1 training set,

Figure 5: The accuracy over
the seven rounds.

Figure 6: Updating by a subset
of locations.

underwent evaluation using the databases from rounds 𝑟1 to 𝑟7,

notably without being retrained with databases from rounds 𝑟2 to 𝑟7.

Figure 5 illustrates the consistently high accuracy of our classifier

across the first five data collection rounds (𝑟1− 𝑟5), with the average

precision and recall stabilizing no lower than 89.8% and 91.1%,

respectively. This stability is attributed to three principal factors:

First, the integration of techniques that are proposed in Section 3.1.1,

including de-chirping, FFT, phase rotation compensation for ampli-

tude calculation, and the phase difference of two antennas for phase

calculation, enhances the stability of CSI data [34, 37]. Second, the

environmental conditions throughout this period were relatively sta-

ble, as evidenced by the data in Table 1. Specifically, the analysis

of this environmental data reveals a average temperature increase

of 3.1◦C from round 𝑟1 to rounds 𝑟2 through 𝑟5, suggesting that the

fingerprint database remains robust when temperature fluctuations

are kept below this threshold. Moreover, orchards usually experience

minimal external disturbances such as human activity or vehicular

traffic, which further contributes to the stability observed.

Aging Problem: Figure 5 also presents a noticeable decline

in the classifier’s accuracy from round 𝑟6, with precision and re-
call dropping to 56.8% and 66.5%, respectively. This downturn is

primarily ascribed to a significant shift in the distribution of finger-

prints, prompted by the altered environmental dynamics at rounds

𝑟6 and 𝑟7 compared to those in round 𝑟1. In particular, Table 1 high-

lights a substantial temperature increase of 10.5◦C from round 𝑟1
to rounds 𝑟6 and 𝑟7. This variance highlights the need for periodic

refreshing of CSI fingerprints when temperature changes surpass the

3.1◦C mark, underlining the importance of regular updates to the

fingerprint database to preserve the accuracy of the classifier.

Vast Orchard: In a 100-acre orchard with row and column spac-

ing of 6.7 m and 4.9 m, and LoRa communication range of 120 m,

the orchard is divided into 29 areas, each with 19 × 26 trees (loca-

tions) [4]. Allocating three minutes per location for data collection,

the total survey time amounts to 29.8 days. The requirement for data-

base refreshment further complicates the process, rendering such

site surveys infeasible.

3.4 Key Observations
We pinpoint two key observations in orchards that aid in reducing

labor for building and updating database.

3.4.1 Media Homogeneity. A experiment focusing on Received

Signal Strength Indicator (RSSI) estimation was conducted to ex-

plain this concept. The Log-Normal Shadowing model (Log) [4, 42]

is employed to estimate the RSSI of the received signals. The model

uses Path Loss Exponent (PLE) to represent environmental impacts
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Table 1: Statistics of environmental dynamics observed across
seven data collection rounds over a four-week period, with each
round lasting approximately four hours.

Date Humidity (%) Temp (◦C) Wind (m/s)

1st day AM (r1) 39.0 ± 8.5 26.7 ± 2.6 2.1 ± 0.1
1st day PM (r2) 34.3 ± 3.5 31.0 ± 0.9 1.9 ± 0.3
2nd day PM (r3) 42.3 ± 3.1 29.9 ± 0.4 2.1 ± 0.4
3rd day PM (r4) 43.7 ± 1.5 27.8 ± 1.5 2.1 ± 0.3
10th day PM (r5) 56.3 ± 18.6 31.2 ± 5.8 0.8 ± 0.4
17th day PM (r6) 39.3 ± 11.5 36.8 ± 2.7 1.0 ± 0.2
24th day PM (r7) 24.7 ± 3.5 35.5 ± 0.7 2.0 ± 0.0

on signal. In orchards, signals traverse three media: air, foliage, and

ground. Therefore, PLE is decomposed into three components [4]:

𝑃𝐿𝐸 = 𝑃𝑎𝑖𝑟 × 𝛼 + 𝑃𝑓 𝑜𝑙𝑖𝑎𝑔𝑒 × 𝛽 + 𝑃𝑔𝑟𝑜𝑢𝑛𝑑 × 𝛾 (1)

where 𝑃𝑎𝑖𝑟 , 𝑃𝑓 𝑜𝑙𝑖𝑎𝑔𝑒 , and 𝑃𝑔𝑟𝑜𝑢𝑛𝑑 are proportions of air, foliage,

and ground among signal transmission path. The 𝛼 , 𝛽, and 𝛾 are

the intrinsic PLE for signals propagating through air, foliage, and

ground. We collected RSSI data at four locations in an orchard across

four weeks. Data from the first week were used to fit the values of 𝛼 ,

𝛽, and 𝛾 . Log was then evaluated over the next three weeks in two

cases: 1) without updating 𝛼 , 𝛽, and 𝛾 ; 2) updating 𝛼 , 𝛽, and 𝛾 using

data from only one location.

Figure 6 shows the estimation error for both cases. The error in

case 2 significantly reduced from 13.9 to 5.7 dB across all locations,

compared to case 1. This is due to orchards’ media homogeneity,

where all locations share the same 𝛼 , 𝛽, and 𝛾 values. Thus, updating

Log with data from just one location effectively improves accuracy

across others. Hence, in orchards, updating models with data from a
subset of locations enhances accuracy across others.

3.4.2 Spatial Homogeneity. An orchard is divided into multiple

areas, each covered by a gateway and maintaining a similar tree

layout. Each gateway holds its own database for its coverage area.

The similarity of CSI databases across areas, owing to tree layout

uniformity, is spatial homogeneity.

To confirm this assertion, we analyze the spatial spectra of iden-

tical location IDs within two areas, using the PSNR (Peak Signal-

to-Noise Ratio) to quantify their similarity. Higher PSNR values

indicate greater similarity [43]. As illustrated in Figure 7, PSNR for

the same location IDs across two areas reaches as high as 25.1 dB,

suggesting high spectral similarities. Moreover, Figure 8 presents

PSNR of spatial spectra for corresponding location IDs across six

areas, revealing that 86.7% of the spectra have a PSNR above 20

dB. Similar spatial spectra imply similar CSI, as both reflect signals

undergoing similar environmental impact. This confirms that various
areas within an orchard exhibit similar CSI fingerprints.

4 WORKFLOW OF ORCHLOC
Figure 1 presents the workflow of OrchLoc, designed for efficient

database building and updating in orchards, consisting of three

stages: pre-training, fine-tuning, and inference.

In the pre-training stage, we select one area as the reference area,

collecting CSI fingerprints from all locations within the reference

area to build an initial database. This database pre-trains the CGM,

Figure 7: Spatial spectra of
same ID in two areas.

Figure 8: Similarity of spatial
spectra across six areas.

which integrates a location-aware diffusion model with CSI and

FFZ-based location representers, enabling the generation of CSI

fingerprints for different locations.

The fine-tuning stage is essential for either building or updating

the database for an area. Building: Fingerprints from locations with

static sensor nodes are used to fine-tune the pre-trained CGM, adapt-

ing it to local variations of the area. The refined CGM generates

fingerprints for locations without sensors, which are then combined

with data from sensor-equipped locations to form a complete data-

base. This database are used to train the area-specific complex-valued

location classifier. Updating: The distinction lies in fine-tuning the

existing area-specific CGM instead of the initial pre-trained CGM.

During the inference stage, the trained classifier determines the

robot’s location based on its current CSI measurement.

The pre-training and fine-tuning stages, termed as turbo-training,

leverages two observations made in orchards. First, using fingerprints

from all locations in a reference area exploits spatial homogeneity,

as this area’s database characteristics mirror those of other areas.

Second, the success of the fine-tuning across all locations is due to

Media Homogeneity. Although CGM model is more complex than

the Log model, its parameters essentially are akin to Log’s 𝛼 , 𝛽, and

𝛾 . These parameters represent the media’s shadowing effect on the

signal’s RSSI or CSI in orchards. Thus, fine-tuned parameters of

either Log or CGM are applicable across all locations.

5 CSI GENERATIVE MODEL
Figure 1 also outlines three components of the CSI generative model
(CGM). The location-aware diffusion model (LoDM), receiving

input from CSI and location representers, learns the relationship

between CSI fingerprints and location IDs. The CSI representer

employs an complex-valued autoencoder: the encoder Φ transforms

low-dimensional CSI into a high-order signal vector z0, while the

decoder Ψ reconstructs the raw CSI x̃0 from the signal vector z̃0
generated by the LoDM. For the location representer, the location

ID is converted to an FFZ vector y via FFZ modeling, which is then

processed by an FFZ encoder Γ into a high-order link vector 𝜁 .

Pairs of CSI fingerprints and their corresponding location IDs are

fed into CGM for training. To generate CSI fingerprints, the location

ID and Gaussian noise, mirroring the shape of a CSI fingerprint, are

input into the well-trained CGM.

5.1 CSI Representer
Raw CSI inevitably contains measurement noise, which stems from

factors like fluctuating atmospheric conditions. Directly using this
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noisy data can lead the LoDM to incorrectly interpret these tran-

sient disturbances as genuine features. Moreover, relying on a low-

dimensional CSI vector might result in overfitting [44–46], where

the model becomes excessively tailored to specific patterns. This

specialization can curb model’s performance on new CSI data. To

this end, we develop a complex-valued autoencoder to derive high-

dimensional CSI representations.

The encoder Φ is comprised of three complex-valued FC blocks.

Following each block, an ReLU function is applied to introduce

non-linearity, thereby enabling the encoder to effectively capture

higher-order representations within the CSI data. The dimension of

each layer successively doubles that of the preceding one. Parallel

to the encoder structure, the decoder Ψ is made up of three complex-

valued FC blocks. It reconstructs the raw CSI data from the encoded

representation. Starting with the high-dimensional size, each FC

block in the decoder reduces the dimension by half, culminating in

the reconstruction of the raw CSI vector x̃0.

After obtaining the reconstructed CSI vector x̃0 from the decoder

Ψ, we compute the 𝐿2 loss, given by L𝐿2 (x0, x̃0) = ‖x0 − x̃0‖22, to

train the complex-valued autoencoder.

5.2 Location Representer
The location representer incorporates FFZ modeling and an FFZ

encoder to learn the location representation.

5.2.1 FFZ Modeling. The CSI vector is labeled with a location

ID ranging from 1 to 𝑀 , typically represented as a one-hot vector of

length 𝑀 , with a single bit set to 1 for the specific ID. However, one-

hot encoding presents limitations, such as reduced training efficiency

and lack of physical location context for guiding the LoDM in

learning CSI-location relationships. To this end, FFZ modeling is

devised. It transforms a location ID into a 7-element FFZ vector y

that encapsulates physical factors influencing signal transmission.

The FFZ represents a 3D ellipsoid region concentrating most of

the signal’s energy, with focal points aligned to the 3D coordinates

of the node and gateway. In orchards, the FFZ contains three media

(air, foliage, and ground), each reporting distinct shadowing effects

on the signal. Thus, we calculate the proportions of three media to

profile the signal path.

A 3D orchard representation is created using a Cartesian coor-

dinate system, with 𝑥 and 𝑦 axes along and across orchard rows,

and 𝑧 axis pointing upwards, originating at the gateway’s position

on the ground. Uniform tree spacing in orchards determines tree

positions on 𝑥 and 𝑦 axes. Trees are modeled as cylinders (trunks)

and ellipsoids (crowns), only requiring measurements of height and

canopy width. Consistent growth patterns of trees across the same

orchard allow for modeling based on a single representative tree,

thus enabling a 3D representation of the orchard.

Utilizing the 3D coordinates of the FFZ’s focal points and its

mathematical formulation [42], the 3D FFZ is represented within the

established coordinate system. Numerous sampling points within

the 3D FFZ are then evaluated for interactions with air, trees, or

ground. The proportion of each medium is calculated by comparing

the number of sampling points interacting with each medium to the

total within the 3D FFZ.

Furthermore, acknowledging the impact of both distance and

direction between node and gateway on the received signal, the

Figure 9: The location-aware diffusion model (LoDM).

normalized distance and 3D direction are incorporated. This yields a

7-dimensional FFZ vector y.

5.2.2 FFZ Encoder. The FFZ vector y captures factors affecting

the CSI vector, providing the LoDM with physical location informa-

tion to understand the CSI-location relationship. However, due to

uniform orchard layouts, identical FFZ vectors are generated for the

same location ID across different areas, limiting new area adaptation

for the LoDM. To overcome this, the FFZ encoder Γ transforms the

FFZ vector y into the link vector 𝜁 . Comprising multiple real-valued

FC layers with ReLU activation, it is co-trained with the LoDM.

Therefore, refining the FFZ Encoder while fine-tuning the LoDM to

new areas allows it to adjust to subtle local environmental variations.

5.3 Location-Aware Diffusion Model
We develop the LoDM for generating CSI across various locations,

inspired by the denoising diffusion probabilistic model (DDPM) [28],

5.3.1 Overview. Figure 9 depicts the architecture of LoDM, which

consists of two Markov chains: forward and reverse. In the forward

chain, unlike DDPM that introduces noise to raw data, we use sig-

nal vectors z0 (high-order representations of raw CSI vector x0) to

produce a sequence of noisy signal vectors z𝑡 . This is achieved by

incrementally adding Gaussian noise to z0 at each time step 𝑡 , which

ranges from 1 to 𝑇 .

In the reverse chain, the critical task is to accurately subtract noise

from the noisy signal vector via the denoise module. Considering

location effects on the signal, the module inputs both the noisy signal

vector z𝑡 and the link vector 𝜁 to estimate noise in z̃𝑡 at each time

step 𝑡 . Attention layers are incorporated to fuse the signal and link

vectors, enhancing the noise estimation process. Subtracting this

estimated noise from noisy vector z̃𝑡 produces z̃𝑡−1, the input for the

next denoise step 𝑡 − 1. This iterative process progresses from 𝑇 to

1, ultimately recovering the initial signal vector z̃0.

The generation of a new single vector requires two inputs: a link

vector 𝜁 and a random noisy vector z𝑇 , sampled from a Gaussian dis-

tribution. This is followed by employing ancestral sampling through

the reverse Markov chain.

5.3.2 Denoise Module. Figure 10 shows the denoise module,

featuring a deep neural network-based noise predictor. It integrates
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a complex-valued U-Net, an embedding layer, and attention layers

to estimate noise in the noisy signal vector z̃𝑡 , given time step 𝑡 and

link vector 𝜁 . The module subtracts the estimated noise from z̃𝑡 ,

generating z̃𝑡−1 for the next step 𝑡 − 1. Thus, the noise predictor is

central to the module’s function.

Complex-Valued U-Net Backbone: The U-Net backbone [29],

illustrated in Figure 10, features a dual-path design comprising

contracting and expansive segments. This architecture excels in

feature extraction and reconstruction [28], making U-Net well-suited

for generating CSI fingerprints that capture signal variations induced

by environmental conditions in orchards. The contracting path (right

trapezoid) compresses the signal vector for key feature extraction

and global trend identification. Conversely, the expansive path (left

trapezoid) reconstructs this data, focusing on subtle details and

maintaining spatial correlations. This dual architecture captures the

complex dimensions of the signal vector.

In detail, the contracting path features downsampling layers with

1D convolutions (increasing channel count), ReLU activations, resid-

ual layers (dotted line), and complex-valued FC block reducing

dimensions. The expansive path includes upsampling layers with 1D

convolutions (decreasing channel count), ReLU activations, residual

layers, and complex-valued FC block expanding dimensions.

Embedding Layer: The time step 𝑡 is transformed from an

integer into a vector using Sinusoidal Position Embeddings [30].

This embedding vector is subsequently added to both the input and

intermediate layers of the predictor.

Attention Layer: Our noise predictor integrates the link vector 𝜁
via an cross-attention layer [30, 31, 47]. This integration enables the

model to focus on location-relevant features, enhancing its capacity

to produce signal vectors for each location. The link vector 𝜁 is

effectively utilized in both downsampling and upsampling layers of

U-Net via attention layers:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√
𝑑

)
·𝑉 (2)

where𝑄 =𝑊𝑄 · 𝜋𝑖 (z𝑡 ), 𝐾 =𝑊𝐾 · 𝜁 ,𝑉 =𝑊𝑉 · 𝜁 are computed using

learnable projection matrices𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 , and 𝜋𝑖 is intermediate

layer of U-Net. The scaling factor
√
𝑑 maintains stability during the

training process, where 𝑑 is the feature size.

5.4 Generalizability to Other Environments
While our system theoretically holds the potential for application

across diverse environments, such as wild forests, its generalizability

depends on having an accurate 3D model of the environment for

location representation and the presence of media and spatial homo-

geneity. These factors are crucial for constructing and updating the

fingerprint database. The structured layout of orchards, featuring uni-

formly positioned trees along with media and spatial homogeneity,

significantly facilitates efficient fingerprinting. In contrast, forests

present a more complex scenario with trees varying in placement,

species, age, and shape, posing substantial challenges to the sys-

tem [48]. Such variability complicates the fingerprinting process,

making it more labor-intensive. Future work could explore methods

to adapt OrchLoc to other environments in a lightweight manner.

Figure 10: The architecture of the denoise module.

6 IMPLEMENTATION
Hardware: LoRa nodes are hand-crafted with SX1276 Radio [49]

on the Arduino Uno boards [50]. The bladeRF 2.0 Software De-

fined Radio (SDR) [51] is used to receive LoRa signals. The SDR

is equipped with two antennas, a common setting for LoRa gate-

ways [52–54], producing two synchronized 𝐼 and 𝑄 streams. The

distance between two antennas is 14.0 cm, less than half the wave-

length of LoRa signal. The SDR is connected to a Raspberry Pi

4. We execute Python scripts on the Raspberry Pi to control the

SDR, enabling it to capture signal samples at a sampling rate of 2

MHz. While acknowledging that dual-antenna configurations are

not standard in commercial LoRa gateways, our choice to use this

setup with SDR is aimed at demonstrating its potential in address-

ing orchard localization challenges. We recognize that commercial

gateways may not adopt this configuration. Our decision to utilize a

gateway with two antennas explore and demonstrate the potential in

addressing in-orchard localization challenges. Collected samples are

processed on a local computer equipped with a CPU that has an In-

tel(R) Core(TM) i9-11900KF @ 3.50 GHz. A NVIDIA GEFORCE

RTX 3080 Ti card is used to accelerate the training process. GPUs

are not required for inference, making OrchLoc compatible with

edge devices employed in agricultural applications.

Training of the Location Classifier: The input layer requires

data in the format X = {𝑥𝑟 , 𝑥𝑖 } ∈ R𝑙×2, with the first and second

columns representing the real and imaginary parts of inputs, respec-

tively. Thus, we flatten the 2×8 CSI vector into a 16-element column

vector (𝑙 = 16), and then compute the real and imaginary values for

each element. The output layer’s size is equal to the number of loca-

tions𝑀 . We use cross-entropy loss [55] to calculate the loss between

the actual and predicted location IDs.

Training of the CSI Generative Model: The CSI representer

shares the same input as the location classifier. Its encoder generates

the signal vector z0 with dimensions 2×128. The location representer,

utilizing FFZ modeling, creates a 7-element FFZ vector y. Then,

the FFZ encoder outputs a link vector 𝜁 of length 32. To reduce

the risk of overfitting, a dropout layer with a probability of 0.1 is

integrated into both the CSI representer and the FFZ encoder. The

CSI representer is trained using the Adam optimizer, with a batch

size of 256 and a learning rate of 0.001.

For LoDM model, Gaussian noise with a mean of zero and a

variance 𝛽𝑡 is introduced in the forward process. The variance 𝛽𝑡
increases linearly from 𝛽1 = 10

−4 to 𝛽𝑇 = 0.02, where 𝑇 is the total

number of time steps in the diffusion process. We set the total number

of time steps 𝑇 = 1000. Its noise predictor is trained to minimize

the discrepancy between the predicted and actual noise. Training
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continues until a specific convergence criterion is satisfied. This can

be either reaching the maximum number of epochs or achieving a

loss lower than a specified threshold. In our implementation, the

maximum epoch is set to 300 and the minimum loss is 0.01. The

chosen hyper-parameters align with those suggested by [28].

To enhance the noise predictor’s learning, which depends on

signal and link vector pairs, we employ the 𝐿2 loss:

L𝐿𝑜𝐷𝑀 = EΦ(x0 ),y,𝑡,𝜖∼N(0,1)
[‖𝜖 − 𝜖𝜃 (z𝑡 , 𝑡, Γ (y))‖2

2

]
(3)

where z𝑡 is the noisy version of z0 = Φ(x0) at time step 𝑡 , with Γ (y)
producing link vector 𝜁 . Time step 𝑡 is sampled uniformly from

{1, · · · ,𝑇 }, 𝜖 represents the true added noise in z𝑡 , and 𝜖𝜃 (z𝑡 , 𝑡, Γ (y))
is the predicted noise. Noise predictor 𝜖𝜃 and FFZ encoder Γ are

co-optimized using this loss.

7 EVALUATION
7.1 Experimental Setting
Pistachio orchards, an economic crop yielding approximately 1.1

billion pounds in 2021, were selected for our evaluation. Figure 11(a)

showcases a pistachio orchard testbed divided into several areas, with

each area containing𝑀 = 64 trees. Among these areas, area𝐴 served

as the reference area. In this orchard, the arrangement features trees

spaced 4.9 m apart in columns and 6.6 m between rows, with the

average tree dimensions being 6.1 m in height and 2.3 m in width.

Within each area, LoRa nodes were positioned adjacent to 64

trees, with each node situated 2.0 m to the right of the trees. At

each node location, LoRa nodes transmitted an 8-byte packet to the

gateway. As shown in Figure 11(b), the LoRa nodes and gateway

were installed at heights of 0.45 m and 10.0 m, respectively. The

system was configured with a transmission power of 14 dBm, a

spreading factor of 10, a bandwidth of 125 kHz, and a coding rate of

4/5. The successive eight packets employed eight different channels,

cycling through sending the eight packets with different channels

over 20 times. Consequently, a total of 160 packets were sent from

each node location, yielding 20 CSI vectors per location. We also

employ the data augmentation technique proposed in Section 3.1.1

to produce 80 additional CSI vectors at each location by adding

Gaussian noise to the initial 20 CSI vectors. Thus, a total of 100

samples are collected at each location.

7.1.1 Datasets. In all areas, LoRa nodes are located 2.0 m right

from trees. At each location, the node transmitted a packet to the

gateway, cycling through eight channels for eight successive packets,

repeated 20 times. Thus, 160 packets were sent from each location.

Area 𝐴 in Figure 11 is selected as the reference area.

Temporal Dimension Dataset: CSI fingerprints were collected

in area 𝐴 seven rounds (𝑟1 to 𝑟7) over four weeks.

Spatial Dimension Dataset: We collected CSI data in six areas

(𝐴 to 𝐹 in Figure 11(a)) of one pistachio orchard and four areas of

another pistachio orchard.

7.1.2 Benchmarks. We use the following benchmarks:

• GPS: We use Google Maps in satellite mode on an IC 5941

GPS radio[56] to identify current location IDs, then compare

them with the actual physical locations.

• RSSI: RSSI data from eight channels are employed to identify

locations via FC layers.

(a) An orchard is divided into multiple areas.

(b) The setup in one area (one gateway and 𝑀 locations).

Figure 11: The illustration of the orchard testbed setup.

• AMP: Only the amplitude of CSI data is used for location

identification via FC layers.

• PHA: Similarly, we only use the phase of CSI data to identify

locations via FC layers.

• KNN: The CSI vector is flattened into a one-dimensional

vector, with KNN applied as the classifier.

7.1.3 Performance Criteria. The location classifier assigns a

CSI vector to a specific location, essentially a classification task.

We evaluate OrchLoc based on average precision and recall, then

translate classification results into localization error.

Precision and recall are calculated for each location: precision as

the ratio of correctly identified instances to all predictions for that

location, and recall as the ratio of correct identifications to the total

instances at that location. These two metrics serve as indicators of

the classifier’s accuracy and reliability in correctly identifying tree

locations. The emphasis on precision and recall can vary depending

on specific applications. For instance, in the case of disease detec-

tion among trees, a high recall is paramount. This ensures that all

potentially diseased trees are flagged for further inspection, priori-

tizing the identification of all cases over the risk of false positives.

Conversely, other applications might demand higher precision to

minimize the risk of false identifications.

Localization error is the Euclidean distance between the actual

and predicted location IDs, taking into account the row and column

spacing. Here, each tree is assigned a unique location ID, with a

location point situated 2.0 m to the right of the tree’s trunk.

7.2 Temporal Dimension Performance
The efficacy of our system may be affected by various environmental

dynamics, which can be classified into three categories [4]: 1) short-

term weather changes, e.g., temperature fluctuations; 2) changes

in foliage density; and 3) long-term changes in foliage shape. Our
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(a) Precision (b) Recall

Figure 12: The performance in area 𝐴 from rounds 𝑟2 to 𝑟7
without and with the turbo-training scheme.

temporal dataset encompasses the first two dynamics. Specifically,

weather variation across the seven rounds is detailed in Table 1,

and the rapid growth of pistachio trees in July suggests changes

in foliage density [57]. For each data collection round, CSI data

are collected at 𝑀 = 64 locations, with the data from each location

divided into training and testing parts in a 7 : 3 ratio. Thus, for each

round, the training or testing parts for all locations collectively forms

the round’s training or testing dataset.

In response to these environmental variability, we devised a turbo-

training scheme that autonomously refreshes the fingerprints. First,

a CGM is pre-trained with the round 𝑟1 training set, necessitating

manual collection of CSI data at each location. Following this initial

manual measurement, the CGM is fine-tuned using data from sensor

nodes [58] already deployed for other agricultural tasks (e.g., smart

irrigation [59] and pest monitoring). To simulate data from these

locations with sensor nodes, we randomly select training parts from

30% of the locations at each round for fine-tuning the pre-trained

CGM. The refined CGM is capable of generating updated finger-

prints for every location at the subsequent round, thus maintaining

the classifier’s efficacy. The refreshed classifier is then applied to

identify location IDs from the CSI data in each round’s testing set.

As outlined in Table 1, temperature fluctuations are confined to a

3.0◦C range over a period of four hours. If a sensor node transmits

its sensing data every 15 minutes, this enables a gateway to collect

16 CSI samples from a single sensor node within four hours. Before

encountering significant temperature changes, our turbo-training

scheme capitalizes on these samples to fine-tune the CGM.

Figure 12 shows that, with turbo-training, our classifier achieves

an average precision of 96.3% and recall of 97.6%, alongside a

localization error of 0.4 m. This demonstrates resilience to tempera-

ture variations up to 10.5◦C, significantly surpassing the threshold

of 3.1◦C identified in Section 3.3. Thus, turbo-training effectively

manages short-term weather changes and foliage density variations,

eliminating the need for manual CSI fingerprint collection.

Moving forward, if temperature deviations exceed 10.5◦C, our

system’s performance may decline. Future endeavors will aim at thor-

oughly evaluating and enhancing our system’s robustness through ex-

tensive experimental studies. Moreover, while rapid pistachio growth

was observed, it did not cover a wide range of foliage changes. Signif-

icant alterations in tree foliage, such as extensive leaf loss impacting

CSI features, could potentially affect our system’s performance ad-

versely. Our system is particularly beneficial in environments with

dense foliage, where thick foliage can significantly obstruct GPS sig-

nals. Conversely, in seasons with sparse foliage, such as late autumn

(a) Classification error. (b) Localization error.

Figure 13: The localization accuracy in the four areas of the
second pistachio orchard.

or winter, simpler GPS/INS systems may provide sufficient navi-

gation accuracy due to unobstructed GPS signal paths [9], thereby

reducing the necessity for our system.

Long-Term Foliage Shape Changes: The foliage shape chang-

ing, characterized by trunk and branch growth over years, necessi-

tates an evaluation of its impact on localization accuracy. To this end,

data were collected in a second pistachio orchard exhibiting slightly

distinct characteristics from the first: row and column spacings of

6.6 m and 4.8 m, respectively, and average tree dimensions of 5.8 m

in height and 2.1 m in width. This variance in orchard layout and tree

size provides an ideal context for assessing the adaptability of our

system to long-term environmental changes. Utilizing the pre-trained

CGM from the reference area, we can generate fingerprints for new

areas, whether they are areas covered by another gateway within

the first orchard or entirely different orchards. This adaptability is

enhanced by fine-tuning the pre-trained CGM with packets received

from existing sensor nodes in the new area, tailoring the model to

the local environmental conditions.

CSI data were collected from four areas (𝐵2, 𝐶2, 𝐷2, and 𝐸2) in

the second orchard. For each area, training data from 30% of the

locations were randomly selected to refine their classifiers through

the turbo-training scheme, employing the CGM pre-trained with data

from area 𝐴. The performance of these updated classifiers was then

evaluated in their corresponding areas to gauge their adaptability

to variations in foliage structure. It is imperative to note that the

collected data at different areas is only for simulating data from

locations having sensor nodes and for system evaluation purposes.

As depicted in Figure 13, our system demonstrated commendable

performance in the second orchard, achieving recall rates of 79.3%,

71.9%, 72.1%, and 63.1%, and mean localization errors of 2.8, 3.5,

4.1, and 5.3 m across the four areas. Although a performance decre-

ment was observed, likely attributable to the differences between the

orchards, the results remain promising. With an average precision
and recall of 63.8% and 71.6%, respectively—without necessitating

manual data collection—the achieved accuracy surpasses the inter-

tree distance of 6.6 m and the typical GPS error of 7.9 m (as detailed

in Section 7.4). These findings validate our system’s potential to

significantly reduce labor costs for training data collection in new

orchards, underscoring its adaptability to environmental changes.

7.3 Spatial Dimension Performance
The turbo-training scheme was employed across five new areas

(𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 ) within the first orchard, selecting a random

30% of locations in each for this turbo-training. This facilitated the
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(a) Classification error. (b) Localization error.

Figure 14: The localization accuracy in the five areas of the first
pistachio orchard.

development of location classifiers tailored to each specific area,

which were then utilized for testing in these areas.

As depicted in Figure 14, our system demonstrated substantial

effectiveness in these new areas. Notably, we attained precision of

95.9%, 93.3%, 93.9%, 89.7%, and 87.1%, along with mean localiza-

tion errors of 0.5, 0.7, 0.8, 1.3, and 2.1 m for areas 𝐵, 𝐶, 𝐷 , 𝐸, and 𝐹
respectively. A discernible trend is the gradual performance decline

correlating with increased distances from area 𝐴. This pattern is

likely attributed to shifts in the data distribution resulting from local-

ized environmental variations across different areas when compared

to the reference area 𝐴. Additionally, the discrepancies in accuracy

relative to those presented in Figure 12 could stem from both spatial

and temporal diversity—given that the data from these new areas

were collected at different times relative to area 𝐴. Incorporating

additional location data for turbo-training could mitigate this.

7.4 Benchmark Study
We assess five baselines on the dataset from area 𝐴 at round 𝑟1. The

RSSI-based, amplitude-based, and phase-based classifiers utilize

three FC layers. The amplitude and phase data are derived from CSI

data, while RSSI is calculated using collected 𝐼 𝑄 samples. For KNN-

based classifier, the location ID for a CSI vector in the test dataset is

identified by finding the 𝑘 nearest CSI vectors in the training dataset

via Euclidean distance, and assigning the most common ID among

these neighbors. After a grid search, we selected 𝑘 = 5.

Currently, smartphones utilize signals from multiple Global Navi-

gation Satellite Systems (GNSS), including GPS, GLONASS, and

Galileo, combining these to provide fused positioning results. De-

spite this integration of several signals, Figure 15 shows that GPS has

the lowest precision and recall, at 18.8% and 9.4% respectively, with

a mean localization error of 7.9 m. It is due to dense tree canopies ob-

structing GPS signals. Instead of correctly pinpointing the location

ID, GPS often identifies neighboring rows or columns.

OrchLoc outperforms RSSI, AMP, and PHA, enhancing precision
by 56.6%, 20.3%, and 46.7%, and recall by 41.9%, 15.4%, and 34.3%,

respectively. The mean localization errors using RSSI, amplitude,

phase, or CSI are 4.6, 2.7, 4.7, and 0.5 m, highlighting CSI’s supe-

riority in location identification. While amplitude alone is limited,

the incorporation of phase information enriches location matching.

Our complex-valued classifier, unlike simple FC layers, effectively

utilizes the full potential of the CSI data, boosting accuracy.

Although a marginal improvement of OrchLoc, compared to

KNN, is observed with a 2.0% increase in precision and a 3.9%

increase in recall, our system outperforms KNN in several aspects.

(a) Classification error. (b) Localization error.

Figure 15: The localization accuracy in area 𝐴 with six different
location classifier.

First, as illustrated in Figure 15(b), our classifier significantly re-

duces the mean localization error from KNN’s 0.99 m to 0.54 m,

translating to a 45.0% improvement. Upon a detailed examination

of all instances of misclassification, we observed that the mean lo-

calization errors for KNN and our system were 7.8 m and 14.6 m,

respectively. Despite these comparable misclassification rates, our

model consistently generates predictions that are closer to the true

positions than those produced by KNN. This advantage is attributed

to our classifier’s complex-valued FC block for analyzing the inter-

action between phase and amplitude within CSI data. In contrast,

KNN’s method of merging amplitude and phase into a single column

vector may obscure spatial or structural characteristics of the CSI

vector, thereby interfering with the precise interpretation of the data.

Second, for robotic navigation, the precision with which our

classifier provides localization information is of utmost importance

for calibrating INS drift. The significant reduction in localization

error facilitated by our system necessitates less time for the EKF to

correct drift, thus enhancing the efficacy of navigational adjustments.

The lower precision and recall of KNN, coupled with its larger

localization errors in misclassification cases, increase the risk of

substantial navigational inaccuracies.

Furthermore, our classifier exhibits a remarkable improvement in

computational efficiency for inference, requiring significantly fewer

floating-point operations per second (FLOPs), specifically 34,816,

compared to KNN’s 6,850,160 FLOPs. This drastic difference in

computational demand can be attributed to the inherent characteris-

tics of the algorithms; KNN, being a lazy learning algorithm, lacks

a training phase and necessitates the comparison of all instances

in the training dataset during inference to identify the most similar

instances. In contrast, our classifier efficiently performs a single

forward computation for inference, thereby streamlining the compu-

tational process and reducing the operational burden.

Finally, it is also critical to emphasize that both KNN and our

classifier benefit from our innovative turbo-training scheme, incor-

porating the CGM for refreshing fingerprints. This approach enables

both algorithms to utilize updated fingerprints, thereby ensuring

accurate and reliable classification results.

7.5 Robot Navigation
To assess the performance of OrchLoc in the context of robot naviga-

tion, we employ the public dataset [9], as outlined in Section 2. This

dataset enables us to simulate a robot’s path through an orchard en-

vironment. The dataset is formatted as a time series, comprising INS

data and corresponding ground truth coordinates for each timestamp.
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(a) Trajectory reconstruction (b) Absolute trajectory error (ATE)

Figure 16: Comparison of robot navigation performance in an
orchard: GPS vs. OrchLoc computed with INS data.

The simulation process initiates by aligning the robot’s starting posi-

tion with a tree, ensuring the robot’s initial direction of movement

is parallel to the rows of trees. To incorporate CSI data into each

moment of the simulation, we identify the tree closest to the robot’s

current coordinate and extract all available CSI measurements asso-

ciated with that tree. We randomly select one CSI measurement to

represent the timestamp, mirroring the process of integrating GPS

data. These CSI data points are subsequently fed into OrchLoc to

derive inferred location coordinates. To mimic the real-world sce-

nario where a robot might not align perfectly with a tree’s location,

random noise is introduced to the inferred coordinates.

The integration of INS data with GPS or OrchLoc is achieved

through the state-of-the-art Neural-KF algorithm [9]. Figure 16(a)

illustrates two reconstructed trajectories, highlighting OrchLoc’s

enhanced accuracy in comparison to GPS-based navigation. As de-

picted in Figure 16(b), OrchLoc consistently achieves lower naviga-

tion errors, with an average error of 1.2 m compared to GPS’s 3.1 m.

These findings underscore the potential of OrchLoc to significantly

improve navigation accuracy in environments where GPS signals

are obstructed or unreliable.

It is important to recognize that the higher GPS accuracy observed

in Figure 16 compared to Figure 2 stems from the utilization of dis-

tinct sources of GPS data. In this section, GPS data corresponds

to location IDs, specifically tree locations, which were identified

using Google Maps in satellite mode while navigating within or-

chards. These location IDs are then translated into their respective

physical locations, positioned 2.0 m to the right of the tree’s trunk,

incorporating tree location priors into the GPS data. Conversely, in

Figure 2, the GPS data originates from the public dataset [9], to

which we applied an average error of 7.9 m to realistically simulate

GPS performance in orchard environments.

7.6 Parameter Study
In this section, unless specified otherwise, turbo-training scheme

involves pre-training CGM in area 𝐴 and fine-tuning it with 30% of

the location data from area 𝐵. The accuracy of the trained classifier

is tested on the testing set of area 𝐵.

7.6.1 Ratios of Fine-Tuning Data. We explored varying the fine-

tuning location ratios from 5% to 40%. As Figure 17 illustrates,

performance improves with an increased number of locations for

fine-tuning the CGM. OrchLoc achieves 94.1% precision, 95.9%

recall, and an average localization error of 0.8 m in area 𝐵 when the

(a) Classification error. (b) Localization error.

Figure 17: Impact of ratios of number of locations.

Figure 18: Impact of the posi-
tions of the LoRa nodes.

Figure 19: Impact of the num-
ber of sampling layer.

ratio exceeds 30%. However, ratios below 20% yield lower results,

such as only 51.9% precision at a 10% ratio.

OrchLoc’s requirement to deploy LoRa sensor nodes at 30% of

trees complements precision agriculture’s evolving demands [1, 2,

60]. Future efforts will focus on preserving accuracy while reducing

the number of necessary deployment locations through: 1) Incor-

porating additional data types like satellite imagery; 2) Utilizing

active learning to intelligently select critical deployment sites; 3)

Investigating hybrid models combining supervised and unsupervised

techniques to potentially enhance accuracy with fewer sites.

7.6.2 Position of LoRa Node. Typically, the LoRa node is placed

2.0 m right to each tree during CSI data collection. To evaluate the

impact of node position offset on CSI data distribution, the node

was placed at five different locations around the predetermined spot

for each tree, repeated for six trees. Figure 18 presents the CSI data

visualized via t-SNE [41]. The data exhibit a clear clustering effect,

with data from the same tree clustering together, while those from

different trees are distinct. This indicates that, even though there is a

position offset at each location, the data collected close to each tree

still exhibit a similar distribution.

7.6.3 Number of Sampling Layers in Noise Predictor. The

noise predictor in OrchLoc includes multiple sampling layers within

its contracting and expansive paths. We varied the number of these

layers from 2 to 5 in our experiments. Figure 19 shows that increasing

the number of layers from 2 to 4 enhances precision from 74.2% to

94.1%. Yet, further increasing to 5 layers drops precision to 85.2%.

While fewer layers may not adequately extract latent CSI-location

relationships, too many layers can excessively reduce the vector

length, potentially leading to information loss.

7.7 Overhead of OrchLoc
Sensory LoRa Node: LoRa nodes deployed in orchards for agricul-

tural tasks transmit eight packets across eight channels. Segmenting
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sensing data for transmission over individual channels minimizes

additional energy usage. While this increases collision risk, it can be

mitigated through careful scheduling, utilizing the week-long high

accuracy of the location classifier, and employing efficient MAC

protocols or collision resolution techniques [34, 61–63].

Robot: For a single localization inference, the robot transmits

eight two-byte packets and receives the localization result from the

gateway, a process that consumes 1.4 seconds at SF10 (the lowest

data rate permitted in the US). Given the robot’s velocity of 0.3

m/s [64], typical of agricultural robots, this translates to a movement

of 0.42 m within the 1.4-second interval. As depicted in Figure 18,

such a minor positional shift exerts a negligible impact on CSI

data quality. For robots operating at higher speeds, the strategy of

incorporating periodic 1.4-second pulses for localization purposes

can effectively minimize potential accuracy degradation.

Regarding power consumption, with a power of 0.4 W over a

duration of 1.4 s, the energy consumption is 0.56 J per localization

inference. Consequently, our system represents a low-power, sustain-

able solution well-suited for large-scale agricultural deployments,

where power efficiency is a critical concern.

8 RELATED WORK
Robot Navigation: GPS/INS combines INS data with GPS data

using a Kalman Filter-based algorithm for robot navigation [9, 14].

For instance, Neural-KF [9] utilizes a neural network [65, 66] to

estimate the robot’s velocity and location from raw inertial data,

then refining these estimates with GPS data via a Kalman filter to

improve navigation accuracy. These algorithms critically rely on the

precision of GPS data to compensate for the INS sensor drift. How-

ever, in orchard environments, the accuracy of GPS data is notably

compromised due to signal blockage by crop canopies, presenting a

considerable challenge [9, 14]. While Real-Time Kinematic (RTK)

GPS offers enhanced localization accuracy, their deployment neces-

sitates significant infrastructure investment, including the installation

of base stations throughout the orchard. Such requirements render

RTK GPS economically impractical for a wide range of agricultural

operations. In contrast, our system seeks to utilize the pre-existing

LoRa network infrastructure within orchards to provide a robust and

cost-effective positional reference for INS sensors.

Localization by LoRa Network: The limited bandwidth of

LoRa, at only 125 kHz [67, 68], poses challenges to directly ap-

plying conventional localization algorithms, which are typically

designed for Wi-Fi, Bluetooth, or cellular networks, due to their re-

liance on higher bandwidths [5, 69, 70]. For instance, cellular-based

localization often requires densely deployed base stations, which

is impractical in agricultural settings where cell tower density is

notably low, thus diminishing accuracy. Moreover, the data transmis-

sion and service fees render them cost-prohibitive for agriculture.

Current research on localizing LoRa nodes predominantly em-

ploys techniques such as Time Difference of Arrival (TDoA) [21, 22],

Angle of Arrival (AoA) [23], or path loss models [24]. For example,

Seirios [23] achieves a median localization error of 4.4 m across

a 6, 000 𝑚2 area employing AoA-based localization with a dual-

antenna gateway. However, such methods typically necessitate a

minimum of three gateways and rely on the existence of a LoS

signal path from the node to the gateway, conditions that are often

unmet in orchard environments. In contrast, our system introduces

a fingerprinting-based approach to localization in orchards utiliz-

ing a single gateway, circumventing the limitations associated with

multi-gateway setups and direct signal path dependencies.

Existing LoRa localization works use RSSI as fingerprint [71, 72].

They match RSSI measurements from multiple gateways with a

database to determine a node’s location. However, such methods

presuppose that a packet is received by multiple gateways, a sce-

nario infeasible in orchards. In contrast, OrchLoc enables in-orchard

localization using only one gateway for extracting CSI fingerprints.

CSI-based Fingerprinting in Wi-Fi: CSI-based fingerprinting is

developed in Wi-Fi for indoor localization [25–27]. These methods

utilize either amplitude or phase independently, overlooking the

interconnected information between them. OrchLoc introduces a

complex-valued classifier to effectively learn the latent information

among amplitude and phase of CSI data. Future works may extend to

non-linear chirps to enhance signal heterogeneity [73] and could be

tested for localizing multiple transmitters simultaneously [74–76].

Crowdsourcing has been widely used to gather fingerprints for

WiFi-based indoor localization [77, 78]. For instance, Zee [77] uti-

lizes smartphones’ inertial sensors to map fingerprints onto indoor

maps during users’ routine walks. However, crowdsourcing is im-

practical in orchards, as it requires numerous robots to navigate

within the orchard and accurate tracking of the robots’ trajectories,

both of which are challenging to achieve.

Generative Model for Wireless Signal: Recent studies have em-

ployed generative models for wireless signal modeling [43, 79, 80].

For example, NeRF2 [79] segments 3D spaces into many small

voxels for signal strength estimation. However, it is impractical in

large orchards due to the enormous number of voxels required for

processing. WiNeRT [80] computes the received signal based on

environmental meshes, which are unavailable in orchards. Large lan-

guage models reveal strong capability in code generation and serial

understanding [81–83] but fall short in interpreting and generating

wireless signals [43]. This paper customizes diffusion models for

the synthesis of CSI data across various locations.

9 CONCLUSION
We introduce OrchLoc for in-orchard fingerprinting-based localiza-

tion system that achieves tree-level localization accuracy with a

single gateway. We propose CSI-based fingerprint and a complex-

valued location classifier for location estimation. A turbo-training

scheme, powered by the CGM, is devised to efficiently build and up-

date fingerprint database for each area, significantly reducing labor

costs. Extensive experiments validate the efficacy of OrchLoc.
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